Influence of Tangential Displacement on the Adhesion Force between Gradient Materials

Authors

  • I. A. Lyashenko Technische Universit¨at Berlin, Institut f¨ur Mechanik, FG Systemdynamik und Reibungsphysik, Sekr. C8–4, Raum M 122, Sumy State University
  • Z. M. Liashenko Sumy State University

DOI:

https://doi.org/10.15407/ujpe65.3.205

Keywords:

adhesion, tribology, numerical simulation, method of dimensionality reduction

Abstract

The influence of a tangential displacement on the strength of the adhesive contacts between gradient materials with different gradings of their properties has been studied. Variants with a controlled force (fixed load) and a controlled displacement (fixed grips) are considered. A relationship between the normal and tangential critical force components at which the contact is destroyed is obtained. It is valid within the whole interval of the gradient parameters, where the detachment criterium is obeyed. The optimal parameters at which the adhesive contact strength is maximum are determined. A case of detachment under the action of only the tangential force, i.e. when the normal force equals zero, is analyzed separately.

References

Functionally Graded Materials: Design, Processing and Applications. Edited by Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford (Springer, 1999) [ISBN: 978-1-4615-5301-4].

A. Gupta, T. Mohammad. Recent development in modeling and analysis of functionally graded materials and structures. Prog. Aerosp. Sci. 79, 1 (2015). https://doi.org/10.1016/j.paerosci.2015.07.001

I. Argatov, A. Iantchenko. Rayleigh surface waves in functionally graded materials - long-wave limit. Q. J. Mech. Appl. Math. 72, 197 (2019). https://doi.org/10.1093/qjmam/hbz002

F. Jin, X. Guo, W. Zhang. A unified treatment of axisymmetric adhesive contact on a powerlaw graded elastic half-space. J. Appl. Mech. 80, 061024 (2013). https://doi.org/10.1115/1.4023980

J. Aboudi, M.-J. Pindera, S.M. Arnold. Higher-order theory for functionally graded materials. Compos. Part B Eng. 30, 777 (1999). https://doi.org/10.1016/S1359-8368(99)00053-0

M. Hill, R. Carpenter, G. Paulino, Z. Munir, J. Gibeling. Fracture testing of a layered functionally graded material. In Fracture Resistance Testing of Monolithic and Composite Brittle Materials, edited by J. Salem, G. Quinn, M. Jenkins (ASTM International, 2002), p. 169. https://doi.org/10.1520/STP10478S

C.-E. Rousseau, V.B. Chalivendra, H.V. Tippur, A. Shukla. Experimental fracture mechanics of functionally graded materials: An overview of optical investigations. Exp. Mech. 7, 845 (2010). https://doi.org/10.1007/s11340-010-9381-z

V.L. Popov, R. Pohrt, Q. Li. Strength of adhesive contacts: Influence of contact geometry and material gradients. Friction 5, 308 (2017). https://doi.org/10.1007/s40544-017-0177-3

E. Martinez-Paneda, R. Gallego. Numerical analysis of quasi-static fracture in functionally graded materials. Int. J. Mech. Mater. Des. 11, 405 (2015). https://doi.org/10.1007/s10999-014-9265-y

Q. Li, V.L. Popov. Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials. Comp. Mech. 61, 319 (2017). https://doi.org/10.1007/s00466-017-1461-9

Q. Li, R. Pohrt, I.A. Lyashenko, V.L. Popov. Boundary element method for nonadhesive and adhesive contacts of a coated elastic half-space. Proc. Inst. Mech. Eng. J. 234, 73 (2019). https://doi.org/10.1177/1350650119854250

V.L. Popov, M. Hess. Method of dimensionality reduction in contact mechanics and friction: a user's handbook. I. Axially-symmetric contacts. FU Mech. Eng. 12, 1 (2014).

M. Hess, V.L. Popov. Method of dimensionality reduction in contact mechanics and friction: a user's handbook. II. Power-law graded materials. FU Mech. Eng. 14, 251 (2016). https://doi.org/10.22190/FUME1603251H

M. Hess. A simple method for solving adhesive and non-adhesive axisymmetric contact problems of elastically graded materials. Int. J. Eng. Sci. 104, 20 (2014). https://doi.org/10.1016/j.ijengsci.2016.04.009

E. Willert, A.I. Dmitriev, S.G. Psakhie, V.L. Popov. Effect of elastic grading on fretting wear. Sci. Rep. 9, 7791 (2019). https://doi.org/10.1038/s41598-019-44269-1

I. Argatov. From Winkler's foundation to Popov's foundation. FU Mech. Eng. 17, 181 (2019). https://doi.org/10.22190/FUME190330024A

V.L. Popov, I.A. Lyashenko, A.E. Filippov. Influence of tangential displacement on the adhesion strength of a contact between a parabolic profile and an elastic half-space. Roy. Soc. Open Sci. 4, 161010 (2017). https://doi.org/10.1098/rsos.161010

K.L. Johnson, K. Kendall, A.D. Roberts. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301 (1971). https://doi.org/10.1098/rspa.1971.0141

I.A. Lyashenko, E. Willert, V.L. Popov. Adhesive impact of an elastic sphere with an elastic half space: Numerical analysis based on the method of dimensionality reduction. Mech. Mat. 92, 155 (2016). https://doi.org/10.1016/j.mechmat.2015.09.009

K.L. Johnson. Adhesion and friction between a smooth elastic spherical asperity and a plane surface. Proc. R. Soc. Lond. A 453, 163 (1997). https://doi.org/10.1098/rspa.1997.0010

I.A. Lyashenko. Tangential displacement influence on the critical normal force of adhesive contact breakage in biological systems. FU Mech. Eng. 14, 313 (2016). https://doi.org/10.22190/FUME1603313L

J.W. Hutchinson, Z. Suo. Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63 (1991). https://doi.org/10.1016/S0065-2156(08)70164-9

E. Willert. Dugdale-Maugis adhesive normal contact of axisymmetric power-law graded elastic bodies. FU Mech. Eng. 16, 9 (2018). https://doi.org/10.22190/FUME171121003W

W. Deng, H. Kesari. Depth-dependent hysteresis in adhesive elastic contacts at large surface roughness. Sci. Rep. 9, 1639 (2019). https://doi.org/10.1038/s41598-018-38212-z

B.N.J. Persson. Adhesion between an elastic body and a randomly rough hard surface. Eur. Phys. J. E 8, 385 (2002). https://doi.org/10.1140/epje/i2002-10025-1

Z. Liu, H. Lu, Y. Zheng, D. Tao, Y. Meng, Y. Tian. Transient adhesion in a non-fully detached contact. Sci. Rep. 8, 6147 (2018). https://doi.org/10.1038/s41598-018-24587-6

M. Scaraggi, D. Comingio. Rough contact mechanics for viscoelastic graded materials: The role of small-scale wave-lengths on rubber friction. Int. J. Solids Struct. 125, 276 (2017). https://doi.org/10.1016/j.ijsolstr.2017.06.008

L.D. Landau, E.M. Lifshitz. Theory of Elasticity (Pergamon Press, 1970) [ISBN: 9780080064659].

D.L. Holl. Stress transmission in earths. Highway Res. Board Proc. 20, 709 (1940).

F.M. Borodich, B.A. Galanov, Y.I. Prostov, M.M. Suarez-Alvarez. Influence of complete sticking on the indentation of a rigid cone into an elastic half space in the presence of molecular adhesion. J. Appl. Math. Mech. 76, 590 (2012). https://doi.org/10.1016/j.jappmathmech.2012.11.006

V.L. Popov, A.V. Dimaki. Friction in an adhesive tangential contact in the Coulomb-Dugdale approximation. J. Adhes. 93, 1131 (2017). https://doi.org/10.1080/00218464.2016.1214912

Published

2020-03-26

How to Cite

Lyashenko, I. A., & Liashenko, Z. M. (2020). Influence of Tangential Displacement on the Adhesion Force between Gradient Materials. Ukrainian Journal of Physics, 65(3), 205. https://doi.org/10.15407/ujpe65.3.205

Issue

Section

General physics