The Intensity-Dependent Band Shift Effect in 1D Photonic Crystals for Optical Signal Processing

Authors

  • E. Ya. Glushko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.05.0432

Keywords:

all-optical signal processing, all-optical logic gates, optically nonlinear materials, photonic bandgap materials

Abstract

The electromagnetic spectrum of an optically linear 1D glass-air comb photonic crystal is considered both in the cases of total internal reflection and open incidence. The bandgap-reflection/angular-frequency diagram is calculated for a glass/air comb in the infrared and visible regions. The effect of intensity-dependent reflection arising when a light beam passes through a nonlinear film covering the linear photonic crystal is investigated. The shift of photonic bands is analyzed for silica glass structures containing nonlinear inclusions, and two possible schemes of optical signal processing in a comb-like resonator are discussed.

References

<ol>
<li> J.-M. Brosi, Slow-Light Photonic Crystal Devices for HighSpeed Optical Signal Processing (Univ. Karlsruhe, Karlsruhe, 2010).</li>
<li> F. Yanik, S. Fan, M. Sojiacic, and J.D. Jannopoulos, Opt. Lett. 28, 2506 (2003).&nbsp;<a href="https://doi.org/10.1364/OL.28.002506">https://doi.org/10.1364/OL.28.002506</a></li>
<li> K.A. Rutkowska, D. Duchesne, M.J. Strain, R. Morandotti, M. Sorel, and J. Aza˜na, Optics Express 19, 514 (2011).&nbsp;<a href="https://doi.org/10.1364/OE.19.019514">https://doi.org/10.1364/OE.19.019514</a></li>
<li> H. Inoue, K. Tanaka, I. Tanahashi, T. Hattori, and H. Nakatsuka, Jpn. J. Appl. Phys. 39, 5132 (2000).&nbsp;<a href="https://doi.org/10.1143/JJAP.39.5132">https://doi.org/10.1143/JJAP.39.5132</a></li>
<li> B.C. Jacobs, C.N. Weiler, J.P. Maranchi, C.R. Sprouse, D.G. Lucarelli, and B.G. Rayburn, John Hopkins APL Technical Digest 30, 346 (2012).</li>
<li> J. van Howe and Ch. Xu, J. Lightwave Technology 24, 2649 (2006).&nbsp;<a href="https://doi.org/10.1109/JLT.2006.875229">https://doi.org/10.1109/JLT.2006.875229</a></li>
<li> P. Russell, IEEE LEOS Newsletter 10, 11 (2007).</li>
<li> G. Brambilla, J. Opt. 12, 043001 (2010).&nbsp;<a href="https://doi.org/10.1088/2040-8978/12/4/043001">https://doi.org/10.1088/2040-8978/12/4/043001</a></li>
<li> E.Ya. Glushko, Proc. SPIE 6903, 69030G (2008).&nbsp;<a href="https://doi.org/10.1117/12.763040">https://doi.org/10.1117/12.763040</a></li>
<li> T. Hattori, Jpn. J. Appl. Phys. 41, 1349 (2002).&nbsp;<a href="https://doi.org/10.1143/JJAP.41.1349">https://doi.org/10.1143/JJAP.41.1349</a></li>
<li> A.L. Stepanov, Rev. Adv. Mat. Sci. 27, 115 (2011).</li>
<li> E.Ya. Glushko, Eur. Phys. J. D 66, 36 (2012).&nbsp;<a href="https://doi.org/10.1140/epjd/e2011-20301-3">https://doi.org/10.1140/epjd/e2011-20301-3</a></li>
</ol>

Downloads

Published

2018-10-06

How to Cite

Glushko, E. Y. (2018). The Intensity-Dependent Band Shift Effect in 1D Photonic Crystals for Optical Signal Processing. Ukrainian Journal of Physics, 58(5), 432. https://doi.org/10.15407/ujpe58.05.0432

Issue

Section

Optics, lasers, and quantum electronics