Island-Kind 2D Photonic Crystal Resonator

  • E. Ya. Glushko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
Keywords: photonic bandgap materials, photonic resonators, trapped modes

Abstract

A binary island-kind photonic crystal resonator is investigated analytically and numerically in the framework of the standing wave expansion method. The photonic bandgap structure for a finite SiO2/SiO2 resonator with rectangular elementary cell of micron sizes is first calculated. The classification concept of resonator’s modes is proposed. The field distribution inside the resonator is calculated, and some ways to use the island resonators in optical devices are discussed.

References

E. Yablonovich. Inhibited spontaneous emission in solidstate physics and electronics. Phys. Rev. Let. 58, 2059 (1987).

https://doi.org/10.1103/PhysRevLett.58.2059

S. John, D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade. Photonic Crystals: Molding the Flow of Light (2nd ed.) (Princeton Univ. Press., 2008).

K. Sakoda. Optical Properties of Photonic Crystals (Springer, 2001).

https://doi.org/10.1007/978-3-662-14324-7

N.Y. Winn, S. Fink, Y. Fan, J.D. Joannopoulos. Omnidirectional reflection from a one-dimensional photonic crystal. Opt. Lett. 23, 1573 (1998).

https://doi.org/10.1364/OL.23.001573

M. Deopura, C.K. Ullal, B. Temelkuran, Y. Fink. Dielectric omnidirectional visible reflector. Opt. Lett. 26, 1197 (2001).

https://doi.org/10.1364/OL.26.001197

M. Loncar, T. Doll, J. Vuchkovich, A. Scherer. Design and fabrication of silicon photonic crystal optical waveguides. J. of Lightwave Technology 18, 1402 (2000).

https://doi.org/10.1109/50.887192

C. Jamois, R.B. Wehrspohn, L.C. Andreani, C. Hermann, O. Hess, U. G¨osele. Silicon-based two-dimensional photonic crystal waveguides. Photonics and Nanostruct. – Fundam. and Appl. 1, 1 (2003).

E.Ya. Glushko, O.E. Glushko, L.A. Karachevtseva. Photonic eigenmodes in a photonic crystal membrane. ISRN Optics 2012, Article ID 373968 (2012).

E.Ya. Glushko, O.E. Glushko, L.A. Karachevtseva. Photonic membranes and photonic crystal resonators for alloptical signal processing. Proc. of SPIE 7713, 77131D (2010).

E.Ya. Glushko. Influence of oxidation on the photonic spectrum of a ternary comb-like silicon photonic crystal: intrinsic modes, reflection windows and intrinsic contrastivity. Europ. Phys. J. D 68, 264 (2014).

https://doi.org/10.1140/epjd/e2014-50096-4

E.Ya. Glushko, A.E. Glushko, V.N. Evteev, A.N. Stepanyuk. All-optical signal processing based on trapped modes of a photonic crystal resonator. In: Proc. SPIE 7354, 73540L (2009).

https://doi.org/10.1117/12.820551

E.Ya. Glushko. Switching of electromagnetic eigenmodes in metastructures. Proc. SPIE 6989, Article 69891G (2008).

R. Courant, D. Hilbert. Methods of Mathematical Physics (Interscience, 1953), vol. 1.

G.M.L. Gladwell, H. Zhu. Courant's nodal line theorem and its discrete counterparts. Q. J. Mech. Appl. Math. (Oxford) 55, 1 (2002).

https://doi.org/10.1093/qjmam/55.1.1

Published
2018-12-12
How to Cite
Glushko, E. (2018). Island-Kind 2D Photonic Crystal Resonator. Ukrainian Journal of Physics, 62(11), 945. https://doi.org/10.15407/ujpe62.11.945
Section
Optics, lasers, and quantum electronics