Mechanisms and Parameters of the Binding of Amitozinoberamid to DNA in the Aqueous Solution

Authors

  • S. Yu. Kutovyy Taras Shevchenko National University of Kyiv, Faculty of Physics
  • R. S. Savchuk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • N. V. Bashmakova Taras Shevchenko National University of Kyiv, Faculty of Physics
  • D. M. Hovorun Institute of Molecular Biology and Genetics, Nat. Acad. of Sci. of Ukraine
  • L. A. Zaika Institute of Molecular Biology and Genetics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe63.8.709

Abstract

The interaction between the amitozinoberamid preparation (thiotepa-alkylated berberine) and a DNA macromolecule in the aqueous solution has been studied, by using the optical spectroscopy methods: electron absorption and fluorescence. The dependence of spectral characteristics on the concentration ratio N/c between the DNA base pairs and the ligand molecules is plotted. Using the system of modified Scatchard and McGhee–von Hippel equations, the parameters of the binding of amitozinoberamid to DNA are determined. A comparative analysis of the DNA interaction with amitozinoberamid, on the one hand, and berberine and sanguinarine alkaloids, on the other hand, is carried out. The structure and the spectra of electron absorption of thiotepa, berberine, and amitozinoberamid molecules are calculated in the framework of the density functional theory at the DFT B3LYP/6-31G(d,p) level.

References

<ol>
<li>L.M. Guaman Ortiz, P. Lombardi, M. Tillhon, A.I. Scovassi. Berberine, an epiphany against cancer. Molecules 19, 12349 (2014).
<a href="https://doi.org/10.3390/molecules190812349">https://doi.org/10.3390/molecules190812349</a>
</li>
<li>Y. Cai, Q. Xia, R. Luo, P. Huang, Y. Sun, Y. Shi,W. Jiang. Berberine inhibits the growth of human colorectal adenocarcinoma in vitro and in vivo. J. Natur. Med. 68, 53 (2014).
<a href="https://doi.org/10.1007/s11418-013-0766-z">https://doi.org/10.1007/s11418-013-0766-z</a>
</li>
<li>Y.-S. Seo, M.-J. Yim, B.-H. Kim, K.-R. Kang, S.-Y. Lee, J.-S. Oh, J.-S. You, S.-G. Kim, S.-J. Yu, G.-J. Lee, D.K. Kim, C.S. Kim, J.-S. Kim. Berberine-induced anticancer activities in FaDu head and neck squamous cell carcinoma cells. Oncol. Rep. 34, 3025 (2015).
<a href="https://doi.org/10.3892/or.2015.4312">https://doi.org/10.3892/or.2015.4312</a>
</li>
<li>J.B. Patil, J. Kim, G.K. Jayaprakasha. Berberine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway. Eur. J. Pharm. 645, 70 (2010).
<a href="https://doi.org/10.1016/j.ejphar.2010.07.037">https://doi.org/10.1016/j.ejphar.2010.07.037</a>
</li>
<li>S.M. Meeran, S. Katiyar, K. Katiyar. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicol. Appl. Pharm. 229, 33 (2008).
<a href="https://doi.org/10.1016/j.taap.2007.12.027">https://doi.org/10.1016/j.taap.2007.12.027</a>
</li>
<li>T.L. Serafim, P.J. Olivaira, V.A. Sardao, E. Perkins, D. Parke, J. Holy. Different concentrations of berberine result in distinct cellular localization patterns and cell cycle effects in a melanoma cell line. Cancer Chemoth. Pharm. 61, 1007 (2008).
<a href="https://doi.org/10.1007/s00280-007-0558-9">https://doi.org/10.1007/s00280-007-0558-9</a>
</li>
<li>A. Grebinyk, V. Yashchuk, N. Bashmakova, D. Gryn, T. Hagemann, A. Naumenko, N. Kutsevol, T. Dandekar, M. Frohme. A new triple system DNA-Nanosilver-Berberine for cancer therapy. Appl. Nanosci. 2018, 1 (2018).
<a href="https://doi.org/10.1007/s13204-018-0688-x">https://doi.org/10.1007/s13204-018-0688-x</a>
</li>
<li>N. Bashmakova, S. Kutovyy, V. Yashchuk, D. Hovorun, V. Losytskyy, L. Zaika. Optical spectroscopy studies of the interaction between a number of plant alkaloids and the DNA double helix in an aqueous solution. Ukr. J. Phys. 54, 471 (2009).
</li>
<li>V.G. Gumenyuk, N.V. Bashmakova, S.Yu. Kutovyy, V.M. Yashchuk, L.A. Zaika. Binding parameters of alkaloids berberine and sanguinarine to DNA. Ukr. J. Phys. 56, 525 (2011).
</li>
<li> S.Yu. Kutovyy, R.S. Savchuk, N.V. Bashmakova. Parameters of sanguinarine alkaloid binding with DNA. Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky N 3, 265 (2014) (in Ukrainian).
</li>
<li> V. Gumenyuk, S. Kutovyy, T. Sych, R. Savchuk, N. Bashmakova, Peculiarities of the binding of some small ligands to DNA. Mol. Cryst. Liq. Cryst., 589, 242 (2014).
<a href="https://doi.org/10.1080/15421406.2013.872856">https://doi.org/10.1080/15421406.2013.872856</a>
</li>
<li> S.Yu. Kutovyy, T.P. Sych, L.A. Zaika. Features of ethydium bromide and acridine orange binding to DNA. Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky N 3, 273 (2014) (in Ukrainian).
</li>
<li> D. Bhowmik, B. Franco, F. Gaetano, O. Fabrizio, T.M. Syeda, L. Paolo, G.S. Kumar. Synthesis of new 13-diphenylalkyl analogues of berberine and elucidation of their base pair specificity and energetics of DNA binding. Med. Chem. Commun. 5, 226 (2014).
<a href="https://doi.org/10.1039/c3md00254c">https://doi.org/10.1039/c3md00254c</a>
</li>
<li> D. Bhowmik, H. Maidul, B. Franco, D. Rosaria, L. Paolo, G.S. Kumar. Biophysical studies on the effect of the 13 position substitution of the anticancer alkaloid berberine on its DNA binding. J. Phys. Chem. 116, 2314 (2012).
<a href="https://doi.org/10.1021/jp210072a">https://doi.org/10.1021/jp210072a</a>
</li>
<li> A.I. Potopalskyy, S.T. Rybalko, A.O. Filchenkov, M.P. Zavelevych. Amitozinoberamid as an inhibitor of herpes virus replication. Patent of Ukraine for Utility Model No. 55573 (2010).
</li>
<li> V.I. Danilov, V.V. Danilidonis, D.M. Hovorun, N. Kurita, Y. Murayama, T. Natsume, A.I. Potopalsky, L.A. Zaika. Berberine alkaloid: quantum chemical study of different forms by the DFT and MP2 methods. Chem. Phys. Lett. 430, 409 (2006).
<a href="https://doi.org/10.1016/j.cplett.2006.09.026">https://doi.org/10.1016/j.cplett.2006.09.026</a>
</li>
<li> N. Bashmakova, S. Kutovyy, R. Zhurakivsky, D. Hovorun, V.Yashchuk. Vibrational spectra of berberine and their interpretation by means of DFT quantum-mechanical calculations. Ukr. J. Phys. 56, 130 (2011).
</li>
<li> K.-W. Kim, J.K. Roh, H.-J. Wee, C. Kim. Cancer Drug Discovery: Science and History (Springer, 2016).
<a href="https://doi.org/10.1007/978-94-024-0844-7">https://doi.org/10.1007/978-94-024-0844-7</a>
</li>
<li> G. Scatchard. The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51, 660 (1949).
<a href="https://doi.org/10.1111/j.1749-6632.1949.tb27297.x">https://doi.org/10.1111/j.1749-6632.1949.tb27297.x</a>
</li>
<li> J.D. McGhee, P.H. von Hippel. Theoretical aspects of DNA-protein interactions: co-operative and non-cooperative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 86, 469 (1974).
<a href="https://doi.org/10.1016/0022-2836(74)90031-X">https://doi.org/10.1016/0022-2836(74)90031-X</a>
</li>
<li> T. Nikolaienko, L. Bulavin, L.Sukhodub. The complexation of the anticancer drug ThioTEPA with methylated DNA base guanine: combined ab initio and QTAIM investigation. Mol. Informat. 33, 104 (2014).
<a href="https://doi.org/10.1002/minf.201300059">https://doi.org/10.1002/minf.201300059</a>
</li>
<li> A.P. Orekhov. Chemistry of Alkaloids (Akad. Nauk SSSR, 1955) (in Russian).
</li>

Published

2018-09-07

How to Cite

Kutovyy, S. Y., Savchuk, R. S., Bashmakova, N. V., Hovorun, D. M., & Zaika, L. A. (2018). Mechanisms and Parameters of the Binding of Amitozinoberamid to DNA in the Aqueous Solution. Ukrainian Journal of Physics, 63(8), 709. https://doi.org/10.15407/ujpe63.8.709

Issue

Section

Optics, atoms and molecules