How do Long Improper Purine-Purine Pairs of DNA Bases Adapt the Enzymatically Competent Conformation? Structural Mechanism and Its Quantum-Mechanical Grounds

  • O. O. Brovarets Institute of Molecular Biology and Genetics, Nat. Acad. of Sci. of Ukraine, Institute of High Technologies, Taras Shevchenko National University of Kyiv
  • D. M. Hovorun Institute of Molecular Biology and Genetics, Nat. Acad. of Sci. of Ukraine, Institute of High Technologies, Taras Shevchenko National University of Kyiv
Keywords: DNA biosynthesis, spontaneous transversion, large-amplitude rearrangement, conformational transition, Watson–Crick-like mispair, purine-purine DNA mismatch, MP2 and B3LYP, QTAIM

Abstract

Aimed at the answer the biophysically important question posed in the title of this article, we have first investigated, at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of quantum-mechanical theory, the structural, energetic, and dynamic features of the acquisition of the enzymatically competent conformation by the incorrect А*·А(WC), G·A(WC), A*·G*(WC), and G*·G(WC) DNA base mispairs with the Watson–Crick (WC) geometry – active players on the field of spontaneous point mutagenesis. It is first shown that the characteristic time of these non-dissociative A*·A(WC)↔A*·Asyn(TF), G·A(WC)↔G·Asyn, A*·G*(WC)↔A*·G*syn, and G·G*(WC)↔G·G*syn conformational transitions is much less than the period of time that it is spent by a high-fidelity DNA-polymerase on the incorporation of one nucleotide into the DNA double helix.

References

J.D. Watson and F.H.C. Crick, Cold Spring Harb. Symp. Quant. Biol. 18, 123 (1953).

http://dx.doi.org/10.1101/SQB.1953.018.01.020

E.B. Freese, Brookhaven Symp. Biol. 12, 63 (1959).

M.D. Topal and J.R. Fresco, Nature 263, 285 (1976).

http://dx.doi.org/10.1038/263285a0

R.C. von Borstel, Mutat. Res. 307, 131 (1994).

http://dx.doi.org/10.1016/0027-5107(94)90285-2

E.C. Friedberg, G.C. Walker, W. Siede, R.D. Wood, R.A. Schultz, and T. Ellenberger, DNA Repair and Mutagenesis (ASM Press, Washington, D.C., 2006).

O.S. Kochina, Ye.P. Yurenko, and D.M. Hovorun, Biopol. Cell 23, 167 (2007).

O.O. Brovarets' and D.M. Hovorun, Ukr. Biochem. J. 82, 55 (2010).

O.O. Brovarets', I.M. Kolomiets', and D.M. Hovorun, Quantum Chemistry – Molecules for Innovations, edited by T. Tada (In Tech, 2012), p. 59.

G. Rossetti, P.D. Dans, I. Gomez-Pinto, I. Ivani, G. Gonzalez, and M. Orozco, Nucleic Acids Res. 43, 4309 (2015).

http://dx.doi.org/10.1093/nar/gkv254

O.O. Brovarets' and D.M. Hovorun, J. Biomol. Struct. & Dynam. 32, 127 (2014).

http://dx.doi.org/10.1080/07391102.2012.755795

O.O. Brovarets' and D.M. Hovorun, J. Biomol. Struct. & Dynam. 32, 1474 (2014).

http://dx.doi.org/10.1080/07391102.2013.822829

O.O. Brovarets', R.O. Zhurakivsky, and D.M. Hovorun, Phys. Chem. Chem. Phys. 16, 3715 (2014).

http://dx.doi.org/10.1039/c3cp54708f

O.O. Brovarets' and D.M. Hovorun, Phys. Chem. Chem. Phys. 16, 9074 (2014).

http://dx.doi.org/10.1039/c4cp00488d

O.O. Brovarets' and D.M. Hovorun, Mol. Phys. 112, 3033 (2014).

http://dx.doi.org/10.1080/00268976.2014.927079

O.O. Brovarets' and D.M. Hovorun, Biopol. Cell 27, 221 (2011).

A. Furmanchuk, O. Isayev, L. Gorb, O.V. Shishkin, D.M. Hovorun, and J. Leszczynski, Phys. Chem. Chem. Phys. 13, 4311 (2011).

http://dx.doi.org/10.1039/c0cp02177f

S.P. Samijlenko, Y.P. Yurenko, A.V. Stepanyugin, and D.M. Hovorun, J. Phys. Chem. B 114, 1454 (2012).

http://dx.doi.org/10.1021/jp909099a

R.O. Zhurakivsky and D.M. Hovorun, in Physical Principles of Molecular Organization and Dynamics of Structural Biopolymers, edited by Yu.P. Blagoi et al. (Karazin National Univ. of Kharkiv, Kharkiv, 2012), p. 71.

O.O. Brovarets', R.O. Zhurakivsky, and D.M. Hovorun, J. Mol. Model. 19, 4223 (2013).

http://dx.doi.org/10.1007/s00894-013-1880-2

O.O. Brovarets', R.O. Zhurakivsky, and D. M. Hovorun, J. Comput. Chem. 35, 451 (2014).

http://dx.doi.org/10.1002/jcc.23515

O.O. Brovarets' and D.M. Hovorun, Phys. Chem. Chem. Phys. 6, 15886 (2014).

Y.P. Yurenko, R.O. Zhurakivsky, S.P. Samijlenko, and D.M. Hovorun, J. Biomol. Struct. & Dynam. 29, 5 (2011).

http://dx.doi.org/10.1080/07391102.2011.10507374

S. Kirmizialtin, V. Nguyen, K.A. Johnson, and R. Elber, Structure 20, 618 (2012).

http://dx.doi.org/10.1016/j.str.2012.02.018

M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., GAUSSIAN 09 (Revision B.01) (Gaussian Inc., Wallingford, 2010)

R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, Oxford, 1989).

C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).

http://dx.doi.org/10.1103/PhysRevB.37.785

K.B. Wiberg, J. Comput. Chem. 25, 1342 (2004).

http://dx.doi.org/10.1002/jcc.20058

C.F. Matta, J. Comput. Chem. 31, 1297 (2010).

O.O. Brovarets', R.O. Zhurakivsky, and D.M. Hovorun, Chem. Phys. Lett. 578, 126 (2013).

http://dx.doi.org/10.1016/j.cplett.2013.05.067

O.O. Brovarets' and D.M. Hovorun, Biopol. Cell 26, 72 (2010).

O.O. Brovarets' and D.M. Hovorun, Biopol. Cell 26, 295 (2010).

O.O. Brovarets', R.O. Zhurakivsky, and D.M. Hovorun, Biopol. Cell 26, 398 (2010).

C. Peng, P.Y. Ayala, H.B. Schlegel, and M.J. Frisch, J. Comput. Chem. 17, 49 (1996).

http://dx.doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0

M.J. Frisch, M. Head-Gordon, and J.A. Pople, Chem. Phys. Lett. 166, 281 (1990).

http://dx.doi.org/10.1016/0009-2614(90)80030-H

P.C. Hariharan and J.A. Pople, Theor. Chem. Acc. 28, 213 (1973).

http://dx.doi.org/10.1007/BF00533485

R. Krishnan, J.S. Binkley, R. Seeger, and J.A. Pople, J. Chem. Phys. 72, 650 (1980).

http://dx.doi.org/10.1063/1.438955

R.A. Kendall, T.H. Dunning, Jr, and R.J. Harrison, J. Chem. Phys. 96, 6796 (1992).

http://dx.doi.org/10.1063/1.462569

H.P. Hratchian and H.B. Schlegel, in Theory and Applications of Computational Chemistry: The First 40 Years, edited by C.E. Dykstra, G. Frenking, K.S. Kim, and G. Scuseria (Elsevier, Amsterdam, 2005), p. 195.

http://dx.doi.org/10.1016/B978-044451719-7/50053-6

O.O. Brovarets', R.O. Zhurakivsky, and D.M. Hovorun, J. Biomol. Struct. & Dynam. 33, 674 (2015).

http://dx.doi.org/10.1080/07391102.2014.897259

O.O. Brovarets', R.O. Zhurakivsky, and D.M. Hovorun, J. Mol. Model. 19, 4119 (2013).

http://dx.doi.org/10.1007/s00894-012-1720-9

S.F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

http://dx.doi.org/10.1080/00268977000101561

M. Gutowski, J.H. Van Lenthe, J. Verbeek, F.B. Van Duijneveldt, and G. Chalasinski, Chem. Phys. Lett. 124, 370 (1986).

http://dx.doi.org/10.1016/0009-2614(86)85036-9

J.A. Sordo, S. Chin, and T.L. Sordo, Theor. Chem. Acc. 74, 101 (1988).

http://dx.doi.org/10.1007/BF00528320

J.A. Sordo, J. Mol. Struct. 537, 245 (2001).

http://dx.doi.org/10.1016/S0166-1280(00)00681-3

P.W. Atkins, Physical Chemistry (Oxford Univ. Press, Oxford, 1998).

E. Wigner, Zeit. Physik. Chemie B 19, 203 (1932).

O.O. Brovarets', R.O. Zhurakivsky, and D.M. Hovorun, Mol. Phys. 112, 2005 (2014).

http://dx.doi.org/10.1080/00268976.2013.877170

O.O. Brovarets' and D.M. Hovorun, J. Biomol. Struct. & Dynam. 33, 28 (2015).

O.O. Brovarets' and D.M. Hovorun, J. Biomol. Struct. & Dynam. 33, 925 (2015).

http://dx.doi.org/10.1080/07391102.2014.924879

R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, Oxford, 1990).

C.F. Matta, J. Comput. Chem. 35, 1165 (2014).

http://dx.doi.org/10.1002/jcc.23608

C. Lecomte, E. Espinosa, and C.F. Matta, IUCrJ 2, 161 (2015).

http://dx.doi.org/10.1107/S2052252515002067

C.F. Matta, L. Huang, and L. Masaa, J. Phys. Chem. A 115, 12451 (2011).

http://dx.doi.org/10.1021/jp203973d

T.A. Keith, AIMAll (Version 10.07.01) (2010), available at: aim.tkgristmill.com.

O.O. Brovarets', Y.P. Yurenko, and D.M. Hovorun, J. Biomol. Struct. & Dynam. 32, 993 (2015).

http://dx.doi.org/10.1080/07391102.2013.799439

O.O. Brovarets', Y.P. Yurenko, and D.M. Hovorun, J. Biomol. Struct. & Dynam. 33, 1624 (2014).

http://dx.doi.org/10.1080/07391102.2014.968623

C.F. Matta, N. Castillo, and R.J. Boyd, J. Phys. Chem. B 110, 563 (2006).

http://dx.doi.org/10.1021/jp054986g

E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett. 285, 170 (1998).

http://dx.doi.org/10.1016/S0009-2614(98)00036-0

I. Mata, I. Alkorta, E. Espinosa, and E. Molins, Chem. Phys. Lett. 507, 185 (2011).

http://dx.doi.org/10.1016/j.cplett.2011.03.055

A.V. Iogansen, Spectrochim. Acta A Mol. Biomol. Spectrosc. 55, 1585 (1999).

http://dx.doi.org/10.1016/S1386-1425(98)00348-5

O.O. Brovarets' and D.M. Hovorun, Ukr. Biochem. J. 82, 55 (2010).

O.O. Brovarets' and D.M. Hovorun, Ukr. Biochem. J. 82, 51 (2010).

W. Saenger, Principles of Nucleic Acid Structure (Springer, New York, 1984).

http://dx.doi.org/10.1007/978-1-4612-5190-3

D.N. Govorun, V.D. Danchuk, Ya.R. Mishchuk, I.V. Kondratyuk, N.F. Radomsky, and N.V. Zheltovsky, J. Mol. Struct. 267, 99 (1992).

http://dx.doi.org/10.1016/0022-2860(92)87016-O

T.Y. Nikolaienko, L.A. Bulavin, and D.M. Hovorun, J. Biomol. Struct. & Dynam. 29, 563 (2011).

http://dx.doi.org/10.1080/07391102.2011.10507406

O.O. Brovarets' and D.M. Hovorun, Phys. Chem. Chem. Phys. 15, 20091 (2013).

http://dx.doi.org/10.1039/c3cp52644e

O.O. Brovarets' and D.M. Hovorun, J. Comput. Chem. 34, 2577 (2013).

http://dx.doi.org/10.1002/jcc.23412

O.O. Brovarets', R.O. Zhurakivsky, and D.M. Hovorun, Chem. Phys. Lett. 592, 247 (2014).

http://dx.doi.org/10.1016/j.cplett.2013.12.034

O.O. Brovarets' and D.M. Hovorun, Phys. Chem. Chem. Phys. 17, 15103 (2015).

http://dx.doi.org/10.1039/C5CP01568E

O.O. Brovarets' and D.M. Hovorun, J. Biomol. Struct. & Dynam. (2015).

Published
2019-01-15
How to Cite
Brovarets, O., & Hovorun, D. (2019). How do Long Improper Purine-Purine Pairs of DNA Bases Adapt the Enzymatically Competent Conformation? Structural Mechanism and Its Quantum-Mechanical Grounds. Ukrainian Journal of Physics, 60(8), 748. https://doi.org/10.15407/ujpe60.08.0748
Section
Soft matter