Length in a Noncommutative Phase Space
DOI:
https://doi.org/10.15407/ujpe63.2.102Keywords:
noncommutative phase space, minimal length, uncertainty relationsAbstract
We study restrictions on the length in a noncommutative phase space caused by noncommutativity. The uncertainty relations for coordinates and momenta are considered, and the lower bound of the length is found. We also consider the eigenvalue problem for the squared length operator and find the expression for the minimal length in the noncommutative phase space.
References
<li>N. Seiberg, E. Witten. String theory and noncommutative geometry. J. High Energy Phys. 9909, 032 (1999).
</li>
<li>S. Doplicher, K. Fredenhagen, J.E. Roberts. Spacetime quantization induced by classical gravity. Phys. Lett. B 331, 39 (1994).
<a href="https://doi.org/10.1016/0370-2693(94)90940-7">https://doi.org/10.1016/0370-2693(94)90940-7</a>
</li>
<li>J. Gamboa, M. Loewe, J.C. Rojas. Noncommutative quantum mechanics. Phys. Rev. D 64, 067901 (2001).
<a href="https://doi.org/10.1103/PhysRevD.64.067901">https://doi.org/10.1103/PhysRevD.64.067901</a>
</li>
<li>V.P. Nair, A.P. Polychronakos. Quantum mechanics on the noncommutative plane and sphere. Phys. Lett. B 505, 267 (2001).
<a href="https://doi.org/10.1016/S0370-2693(01)00339-2">https://doi.org/10.1016/S0370-2693(01)00339-2</a>
</li>
<li>K. Bolonek, P. Kosinski. On uncertainty relations in noncommutative quantum mechanics. Phys. Lett. B 547, 51 (2002).
<a href="https://doi.org/10.1016/S0370-2693(02)02731-4">https://doi.org/10.1016/S0370-2693(02)02731-4</a>
</li>
<li>C. Duval, P.A. Horvathy. Exotic Galilean symmetry in the noncommutative plane and the Hall effect. J. Phys. A 34, 10097 (2001).
<a href="https://doi.org/10.1088/0305-4470/34/47/314">https://doi.org/10.1088/0305-4470/34/47/314</a>
</li>
<li>M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu. Hydrogen atom spectrum and the lamb shift in noncommutative QED. Phys. Rev. Lett. 86, 2716 (2001).
<a href="https://doi.org/10.1103/PhysRevLett.86.2716">https://doi.org/10.1103/PhysRevLett.86.2716</a>
</li>
<li>T.C. Adorno, M.C. Baldiotti, M. Chaichian, D.M. Gitman, A. Tureanu. Dirac equation in noncommutative space for hydrogen atom. Phys. Lett. B 682, 235 (2009).
<a href="https://doi.org/10.1016/j.physletb.2009.11.003">https://doi.org/10.1016/j.physletb.2009.11.003</a>
</li>
<li>J.M. Romero, J.D. Vergara. The Kepler problem and noncommutativity. Mod. Phys. Lett. A 18, 1673 (2003).
<a href="https://doi.org/10.1142/S0217732303011472">https://doi.org/10.1142/S0217732303011472</a>
</li>
<li> B. Mirza, M. Dehghani. Noncommutative geometry and classical orbits of particles in a central force potential. Commun. Theor. Phys. 42, 183 (2004).
<a href="https://doi.org/10.1088/0253-6102/42/2/183">https://doi.org/10.1088/0253-6102/42/2/183</a>
</li>
<li> O. Bertolami, P. Leal. Aspects of phase-space noncommutative quantum mechanics. Phys. Lett. B 750, 6 (2015).
<a href="https://doi.org/10.1016/j.physletb.2015.08.024">https://doi.org/10.1016/j.physletb.2015.08.024</a>
</li>
<li> O. Bertolami, J.G. Rosa, C.M.L. de Aragao, P. Castorina, D. Zappala. Scaling of variables and the relation between noncommutative parameters in noncommutative quantum mechanics. Mod. Phys. Lett. A 21, 795 (2006).
<a href="https://doi.org/10.1142/S0217732306019840">https://doi.org/10.1142/S0217732306019840</a>
</li>
<li> Kh.P. Gnatenko, V.M. Tkachuk. Effect of coordinate noncommutativity on the mass of a particle in a uniform field and the equivalence principle. Mod. Phys. Lett. A 31, 1650026 (2016).
<a href="https://doi.org/10.1142/S0217732316500267">https://doi.org/10.1142/S0217732316500267</a>
</li>
<li> Kh.P. Gnatenko. Estimating the upper bound of the parameter of noncommutativity on the basis of the equivalence principle. J. Phys. Stud. 17, 4001 (2013).
</li>
<li> Kh.P. Gnatenko. Physical systems in a space with noncommutativity of coordinates. J. Phys.: Conf. Ser. 670, 012023 (2016).
<a href="https://doi.org/10.1088/1742-6596/670/1/012023">https://doi.org/10.1088/1742-6596/670/1/012023</a>
</li>
<li> H. Snyder. Quantized space-time. Phys. Rev. 71, 38 (1947).
<a href="https://doi.org/10.1103/PhysRev.71.38">https://doi.org/10.1103/PhysRev.71.38</a>
</li>
<li> A.E.F. Djemai, H. Smail. On quantum mechanics on noncommutative quantum phase space. Commun. Theor. Phys. 41, 837 (2004).
<a href="https://doi.org/10.1088/0253-6102/41/6/837">https://doi.org/10.1088/0253-6102/41/6/837</a>
</li>
<li> Li Kang, Chamoun Nidal. Hydrogen atom spectrum in noncommutative phase space. Chin. Phys. Lett. 23, 1122 (2006).
<a href="https://doi.org/10.1088/0256-307X/23/5/016">https://doi.org/10.1088/0256-307X/23/5/016</a>
</li>
<li> S.A. Alavi. Lamb shift and Stark effect in simultaneous space-space and momentum-momentum noncommutative quantum mechanics and O. Mod. Phys. Lett. A 22, 377 (2007).
<a href="https://doi.org/10.1142/S0217732307018579">https://doi.org/10.1142/S0217732307018579</a>
</li>
<li> O. Bertolami, R. Queiroz. Phase-space noncommutativity and the Dirac equation. Phys. Lett. A 375, 4116 (2011).
<a href="https://doi.org/10.1016/j.physleta.2011.09.053">https://doi.org/10.1016/j.physleta.2011.09.053</a>
</li>
<li> A. Smailagic, E. Spallucci. Isotropic representation of the noncommutative 2D harmonic oscillator. Phys. Rev. D 65, 107701 (2002).
<a href="https://doi.org/10.1103/PhysRevD.65.107701">https://doi.org/10.1103/PhysRevD.65.107701</a>
</li>
<li> A. Smailagic, E. Spallucci. Noncommutative 3D harmonic oscillator. J. Phys. A 35, 363 (2002).
<a href="https://doi.org/10.1088/0305-4470/35/26/103">https://doi.org/10.1088/0305-4470/35/26/103</a>
</li>
<li> A. Hatzinikitas, I. Smyrnakis. The noncommutative harmonic oscillator in more than one dimension. J. Math. Phys. 43, 113 (2002).
<a href="https://doi.org/10.1063/1.1416196">https://doi.org/10.1063/1.1416196</a>
</li>
<li> Li Kang, Wang Jianhua, Chen Chiyi. Representation of noncommutative phase space. Mod. Phys. Lett. A 20, 2165 (2005).
<a href="https://doi.org/10.1142/S0217732305017421">https://doi.org/10.1142/S0217732305017421</a>
</li>
<li> C. Acatrinei. Path integral formulation of noncommutative quantum mechanics. J. of High Energy Phys. 9, 007 (2001).
</li>
<li> P.R. Giri, P. Roy. The non-commutative oscillator, symmetry and the Landau problem. Eur. Phys. J. C 57, 835 (2008).
<a href="https://doi.org/10.1140/epjc/s10052-008-0705-4">https://doi.org/10.1140/epjc/s10052-008-0705-4</a>
</li>
<li> J. Ben Geloun, S. Gangopadhyay, F.G. Scholtz. Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space. EPL 86, 51001 (2009).
<a href="https://doi.org/10.1209/0295-5075/86/51001">https://doi.org/10.1209/0295-5075/86/51001</a>
</li>
<li> O. Bertolami, J.G. Rosa, C.M.L. de Aragao, P. Castorina, D. Zappala. Noncommutative gravitational quantum well. Phys. Rev. D 72, 025010 (2005).
<a href="https://doi.org/10.1103/PhysRevD.72.025010">https://doi.org/10.1103/PhysRevD.72.025010</a>
</li>
<li> C. Bastos, O. Bertolami. Berry phase in the gravitational quantum well and the Seiberg–Witten map. Phys. Lett. A 372, 5556 (2008).
<a href="https://doi.org/10.1016/j.physleta.2008.06.073">https://doi.org/10.1016/j.physleta.2008.06.073</a>
</li>
<li> Kh.P. Gnatenko, V. M. Tkachuk. Weak equivalence principle in noncommutative phase space and the parameters of noncommutativity. Phys. Lett. A 381, 2463 (2017).
<a href="https://doi.org/10.1016/j.physleta.2017.05.056">https://doi.org/10.1016/j.physleta.2017.05.056</a>
</li>
<li> J.M. Romero, J.A. Santiago, J.D. Vergara. Note about the quantum of area in a noncommutative space. Phys. Rev. D 68, 067503 (2003).
<a href="https://doi.org/10.1103/PhysRevD.68.067503">https://doi.org/10.1103/PhysRevD.68.067503</a>
</li>
<li> A. Kijanka and P. Kosinski. Noncommutative isotropic harmonic oscillator. Phys. Rev. D 70, 127702 (2004).
<a href="https://doi.org/10.1103/PhysRevD.70.127702">https://doi.org/10.1103/PhysRevD.70.127702</a>
</li>
<li> Kh.P. Gnatenko, V.M. Tkachuk. Minimal length, area, and volume in a space with noncommutativity of coordinates. J. Phys. Stud. 20, 1001 (2016).
</li>
<li> A.E.F. Djemai, H. Smail. On quantum mechanics on noncommutative quantum phase space. Commun. Theor. Phys. 41, 6 (2004).
<a href="https://doi.org/10.1088/0253-6102/41/6/837">https://doi.org/10.1088/0253-6102/41/6/837</a>
</li></ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.