Harmonic Oscillator Chain in Noncommutative Phase Space with Rotational Symmetry
DOI:
https://doi.org/10.15407/ujpe64.2.131Keywords:
harmonic oscillator, composite system, tensors of noncommutativityAbstract
We consider a quantum space with a rotationally invariant noncommutative algebra of coordinates and momenta. The algebra contains the constructed tensors of noncommutativity involving additional coordinates and momenta. In the rotationally invariant noncommutative phase space, the harmonic oscillator chain is studied. We obtain that the noncommutativity affects the frequencies of the system. In the case of a chain of particles with harmonic oscillator interaction, we conclude that, due to the noncommutativity of momenta, the spectrum of the center-of-mass of the system is discrete and corresponds to the spectrum of a harmonic oscillator.
References
N. Seiberg, E. Witten. String theory and noncommutative geometry. J. High Energy Phys. 9909, 032 (1999).
S. Doplicher, K. Fredenhagen, J.E. Roberts. Spacetime quantization induced by classical gravity. Phys. Lett. B 331, 39 (1994). https://doi.org/10.1016/0370-2693(94)90940-7
J.M. Romero, J.A. Santiago, J.D. Vergara. Note about the quantum of area in a noncommutative space. Phys. Rev. D 68, 067503 (2003). https://doi.org/10.1103/PhysRevD.68.067503
Kh. P. Gnatenko, V. M. Tkachuk. Lenght in a noncommutative phase space. Ukr. J. Phys. 63, 102 (2018). https://doi.org/10.15407/ujpe63.2.102
O. Bertolami, R. Queiroz. Phase-space noncommutativity and the Dirac equation. Phys. Lett. A 375, 4116 (2011). https://doi.org/10.1016/j.physleta.2011.09.053
M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu. Hydrogen atom spectrum and the Lamb shift in noncommutative QED. Phys. Rev. Lett. 86, 2716 (2001). https://doi.org/10.1103/PhysRevLett.86.2716
A. P. Balachandran, P. Padmanabhan. Non-Pauli effects from noncommutative spacetimes. J. High Energy Phys. 1012, 001 (2010).
E. F. Moreno. Spherically symmetric monopoles in noncommutative space. Phys. Rev. D 72, 045001 (2005). https://doi.org/10.1103/PhysRevD.72.045001
V. G?alikov?a, P. Presnajder. Hydrogen atom in fuzzy spaces-exact solution. J. Phys: Conf. Ser. 343, 012096 (2012). https://doi.org/10.1088/1742-6596/343/1/012096
R. Amorim. Tensor operators in noncommutative quantum mechanics. Phys. Rev. Lett. 101, 081602 (2008). https://doi.org/10.1103/PhysRevLett.101.081602
Kh.P. Gnatenko, V.M. Tkachuk. Hydrogen atom in rotationally invariant noncommutative space. Phys. Lett. A 378, 3509 (2014). https://doi.org/10.1016/j.physleta.2014.10.021
M. Daszkiewicz, J. Lukierski, M. Woronowicz. Towards quantum noncommutative к-deformed field theory. Phys. Rev. D 77, 105007 (2008). https://doi.org/10.1103/PhysRevD.77.105007
M. Daszkiewicz, J. Lukierski, M. Woronowicz. к-deformed oscillators, the choice of star product and free к-deformed quantum fields. J. Phys. A: Math. Theor. 42, 355201 (2009). https://doi.org/10.1088/1751-8113/42/35/355201
A. Borowiec, Kumar S. Gupta, S. Meljanac, A. Pachol. Constraints on the quantum gravity scale from к-Minkowski spacetime. EPL 92, 20006 (2010). https://doi.org/10.1209/0295-5075/92/20006
A. Borowiec, J. Lukierski, A. Pachol. Twisting and к-Poincar?e. J. Phys. A: Math. Theor. 47 405203 (2014). https://doi.org/10.1088/1751-8113/47/40/405203
A. Borowiec, A. Pachol. к deformations and extended к-Minkowski spacetimes. SIGMA 10, 107 (2014).
M. Gomes, V.G. Kupriyanov. Position-dependent noncommutativity in quantum mechanics. Phys. Rev. D 79, 125011 (2009). https://doi.org/10.1103/PhysRevD.79.125011
V.G. Kupriyanov. A hydrogen atom on curved noncommutative space. J. Phys. A: Math. Theor. 46, 245303 (2013). https://doi.org/10.1088/1751-8113/46/24/245303
A.F. Ferrari, M. Gomes, V.G. Kupriyanov, C.A. Stechhahn. Dynamics of a Dirac fermion in the presence of spin noncommutativity. Phys. Lett. B 718, 1475 (2013). https://doi.org/10.1016/j.physletb.2012.12.010
Kh.P. Gnatenko, V.M. Tkachuk. Noncommutative phase space with rotational symmetry and hydrogen atom. Int. J. Mod. Phys. A 32, 1750161 (2017). https://doi.org/10.1142/S0217751X17501615
S. Ikeda, F. Fillaux. Incoherent elastic-neutron-scattering study of the vibrational dynamics and spin-related symmetry of protons in the KHCO3 crystal. Phys. Rev. B 59, 4134 (1999). https://doi.org/10.1103/PhysRevB.59.4134
F. Fillaux. Quantum entanglement and nonlocal proton transfer dynamics in dimers of formic acid and analogues. Chem. Phys. Lett. 408, 302 (2005). https://doi.org/10.1016/j.cplett.2005.04.069
Fan Hong-yi. Unitary transformation for four harmonically coupled identical oscillators. Phys. Rev. A 42, 4377 (1990). https://doi.org/10.1103/PhysRevA.42.4377
F. Michelot. Solution for an arbitrary number of coupled identical oscillators. Phys. Rev. A 45, 4271 (1992). https://doi.org/10.1103/PhysRevA.45.4271
C.M. Caves, B.L. Schumaker. New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. Phys. Rev. A 31, 3068 (1985). https://doi.org/10.1103/PhysRevA.31.3068
B.L. Schumaker, C.M. Caves. New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation. Phys. Rev. A 31, 3093 (1985). https://doi.org/10.1103/PhysRevA.31.3093
M.B. Plenio, J. Hartley, J. Eisert. Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom. New J. Phys. 6, 36 (2004). https://doi.org/10.1088/1367-2630/6/1/036
N. Isgur, G. Karl. P-wave baryons in the quark model. Phys. Rev. D 18, 4187 (1978). https://doi.org/10.1103/PhysRevD.18.4187
L. Ya. Glozman, D.O. Riska. The spectrum of the nucleons and the strange hyperons and chiral dynamics. Phys. Rept. 268, 263 (1996). https://doi.org/10.1016/0370-1573(95)00062-3
S. Capstick, W. Roberts. Quark models of baryon masses and decays. Prog. Part. Nucl. Phys. 45, 241 (2000). https://doi.org/10.1016/S0146-6410(00)00109-5
K. Audenaert, J. Eisert, M.B. Plenio, R.F. Werner. Entanglement properties of the harmonic chain. Phys. Rev. A 66, 042327 (2002). https://doi.org/10.1103/PhysRevA.66.042327
M.B Plenio, F.L Semiao. High efficiency transfer of quantum information and multiparticle entanglement generation in translation-invariant quantum chains. New J. Phys. 7, 73 (2005). https://doi.org/10.1088/1367-2630/7/1/073
A. Hatzinikitas, I. Smyrnakis. The noncommutative harmonic oscillator in more than one dimension. J. Math. Phys. 43, 113 (2002). https://doi.org/10.1063/1.1416196
A. Kijanka, P. Kosinski. Noncommutative isotropic harmonic oscillator. Phys. Rev. D 70, 127702 (2004). https://doi.org/10.1103/PhysRevD.70.127702
Jing Jian, Jian-Feng Chen. Non-commutative harmonic oscillator in magnetic field and continuous limit. Eur. Phys. J. C 60, 669 (2009). https://doi.org/10.1140/epjc/s10052-009-0950-1
A. Smailagic, E. Spallucci. Isotropic representation of the noncommutative 2D harmonic oscillator. Phys. Rev. D 65, 107701 (2002). https://doi.org/10.1103/PhysRevD.65.107701
A. Smailagic, E. Spallucci. Noncommutative 3D harmonic oscillator. J. Phys. A 35, 363 (2002). https://doi.org/10.1088/0305-4470/35/26/103
B. Muthukumar, P. Mitra. Noncommutative oscillators and the commutative limit. Phys. Rev. D 66, 027701 (2002). https://doi.org/10.1103/PhysRevD.66.027701
P.D. Alvarez, J. Gomis, K. Kamimura, M.S. Plyushchay. Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton—Hooke symmetry. Phys. Lett. B 659, 906 (2008). https://doi.org/10.1016/j.physletb.2007.12.016
A.E.F. Djemai, H. Smail. On quantum mechanics on noncommutative quantum phase space. Commun. Theor. Phys. 41, 837 (2004). https://doi.org/10.1088/0253-6102/41/6/837
I. Dadic, L. Jonke, S. Meljanac. Harmonic oscillator on noncommutative spaces. Acta Phys. Slov. 55, 149 (2005).
P.R. Giri, P. Roy. The non-commutative oscillator, symmetry and the Landau problem. Eur. Phys. J. C 57, 835 (2008). https://doi.org/10.1140/epjc/s10052-008-0705-4
J. Ben Geloun, S. Gangopadhyay, F.G. Scholtz. Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space. EPL 86, 51001 (2009). https://doi.org/10.1209/0295-5075/86/51001
E.M.C. Abreu, M.V. Marcial, A.C.R. Mendes, W. Oliveira. Analytical and numerical analysis of a rotational invariant D=2 harmonic oscillator in the light of different noncommutative phase-space configurations. JHEP 2013, 138 (2013). https://doi.org/10.1007/JHEP11(2013)138
A. Saha, S. Gangopadhyay, S. Saha. Noncommutative quantum mechanics of a harmonic oscillator under linearized gravitational waves. Phys. Rev. D 83, 025004 (2011). https://doi.org/10.1103/PhysRevD.83.025004
D. Nath, P. Roy. Noncommutative anisotropic oscillator in a homogeneous magnetic field. Ann. Phys. 377, 115 (2017). https://doi.org/10.1016/j.aop.2016.12.028
Kh.P. Gnatenko, O.V. Shyiko. Effect of noncommutativity on the spectrum of free particle and harmonic oscillator in rotationally invariant noncommutative phase space. Mod. Phys. Lett. A 33, 1850091 (2018). https://doi.org/10.1142/S0217732318500918
M. Bawaj et al. Probing deformed commutators with macroscopic harmonic oscillators. Nature Commun. 6, 7503 (2015). https://doi.org/10.1038/ncomms8503
A. Jellal, El Hassan El Kinani, M. Schreiber. Two coupled harmonic oscillators on noncommutative plane. Int. J. Mod. Phys. A 20, 1515 (2005). https://doi.org/10.1142/S0217751X05020835
Bing-Sheng Lin, Si-Cong Jing, Tai-Hua Heng. Deformation quantization for coupled harmonic oscillators on a general noncommutative space. Mod. Phys. Lett. A 23, 445, (2008). https://doi.org/10.1142/S0217732308023992
Kh.P. Gnatenko, V.M. Tkachuk. Two-particle system with harmonic oscillator interaction in noncommutative phase space. J. Phys. Stud. 21, 3001 (2017).
Kh.P. Gnatenko. System of interacting harmonic oscillators in rotationally invariant noncommutative phase space. Phys. Lett. A 382, 3317 (2018). https://doi.org/10.1016/j.physleta.2018.09.039
M. Daszkiewicz, C.J. Walczyk. Classical mechanics of many particles defined on canonically deformed nonrelativistic spacetime. Mod. Phys. Lett A 26, 819 (2011). https://doi.org/10.1142/S0217732311035328
C. Bastos, A.E. Bernardini, J.F.G. Santos. Probing phase-space noncommutativity through quantum mechanics and thermodynamics of free particles and quantum rotors. Physica A 438, 340 (2015). https://doi.org/10.1016/j.physa.2015.07.009
Kh.P. Gnatenko, H.P. Laba, V.M. Tkachuk. Features of free particles system motion in noncommutative phase space and conservation of the total momentum. Mod. Phys. Lett. A 33, 1850131 (2018). https://doi.org/10.1142/S0217732318501316
Kh.P. Gnatenko, V.M. Tkachuk. Composite system in rotationally invariant noncommutative phase space. Int. J. Mod. Phys. A 33, 1850037 (2018). https://doi.org/10.1142/S0217751X18500379
Kh.P. Gnatenko. Rotationally invariant noncommutative phase space of canonical type with recovered weak equivalence principle. Europhys. Lett. 123, 50002 (2018). https://doi.org/10.1209/0295-5075/123/50002
Kh.P. Gnatenko. Composite system in noncommutative space and the equivalence principle. Phys. Lett. A 377, 3061 (2013). https://doi.org/10.1016/j.physleta.2013.09.036
Kh.P. Gnatenko, V.M. Tkachuk. Weak equivalence principle in noncommutative phase space and the parameters of noncommutativity. Phys. Lett. A 381, 2463 (2017). https://doi.org/10.1016/j.physleta.2017.05.056
Kh.P. Gnatenko. Kinematic variables in noncommutative phase space and parameters of noncommutativity. Mod. Phys. Lett. A 32, 1750166 (2017). https://doi.org/10.1142/S0217732317501668
J. Florencio, jr., M. Howard Lee. Exact time evolution of a classical harmonic-oscillator chain. Phys. Rev. A 31, 3231 (1985). https://doi.org/10.1103/PhysRevA.31.3231
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.