Corrosion Effect on the Adhesive Strength of a Contact between a Hard Indenter and a Soft Elastomer: An Experimental Study

Authors

  • I.A. Lyashenko Technische Universit¨at Berlin, Institut f¨ur Mechanik, FG Systemdynamik und Reibungsphysik, Sumy State University
  • V.L. Popov Technische Universit¨at Berlin, Institut f¨ur Mechanik, FG Systemdynamik und Reibungsphysik

DOI:

https://doi.org/10.15407/ujpe68.5.349

Keywords:

corrosion, elastomer, adhesive strength, indentation, quasi-static contact

Abstract

The influence of the duration of a contact between a steel indenter susceptible to the corrosion and a water-containing gelatin-based elastomer on the contact adhesive strength has been studied. It is shown that the growth in the contact duration leads to the substantial contact strengthening. As a result, the contact becomes so strong that the pulling of the indenter out of the elastomer causes the destruction of the elastomer surface.

References

H. Hertz. Uber die Ber¨uhrung fester elastischer K¨orper. J. Reine Angew. Math. 92, 156 (1882).

https://doi.org/10.1515/crll.1882.92.156

J.N. Reddy. An Introduction to the Finite Element Method (3rd Ed.) (McGraw-Hill, 2005) [ISBN: 9780071267618].

P.K. Banerjee. The Boundary Element Methods in Engineering (2nd Ed.) (McGraw-Hill, 1994) [ISBN: 0-07-707769-5].

R. Pohrt, Q. Li. Complete boundary element formulation for normal and tangential contact problems. Phys. Mesomech. 17, 334 (2014).

https://doi.org/10.1134/S1029959914040109

S.G. Psakhie, Y. Horie, S.Yu. Korostelev, A.Yu. Smolin, A.I. Dmitriev, E.V. Shilko, S.V. Alekseev. Method of movable cellular automata as a tool for simulation within the framework of mesomechanics. Russ. Phys. J. 38, 1157 (1995).

https://doi.org/10.1007/BF00559396

M.H. M¨user. Elastic contacts of randomly rough indenters with thin sheets, membranes under tension, half spaces, and beyond. Tribol. Lett. 69, 25 (2021).

https://doi.org/10.1007/s11249-020-01383-w

R. Pohrt, V.L. Popov. Adhesive contact simulation of elastic solids using local mesh-dependent detachment criterion in boundary elements method. Facta Univ. Ser. Mech. Eng. 13, 3 (2015).

V.L. Popov, R. Pohrt, Q. Li. Strength of adhesive contacts: Influence of contact geometry and material gradients. Friction 5, 308 (2017).

https://doi.org/10.1007/s40544-017-0177-3

K.L. Johnson, K. Kendall, A.D. Roberts. Surface energy and the contact of elastic solids. Proc. Roy. Soc. Lond. A 324, 301 (1971).

https://doi.org/10.1098/rspa.1971.0141

B.V. Derjaguin, V.M. Muller, Y.P. Toporov. Effect of contact deformations on the adhesion of particles. J. Colloid Interf. Sci. 53, 314 (1975).

https://doi.org/10.1016/0021-9797(75)90018-1

D. Maugis. Adhesion of spheres: the JKR-DMT-transition using a Dugdale model. J. Colloid Interf. Sci. 150, 243 (1992).

https://doi.org/10.1016/0021-9797(92)90285-T

M. Ciavarella, A. Papangelo. A generalized Johnson parameter for pull-off decay in the adhesion of rough surfaces. Phys. Mesomech. 21, 67 (2018).

https://doi.org/10.1134/S1029959918010095

A. Pepelyshev, F.M. Borodich, B.A. Galanov, E.V. Gorb, S.N. Gorb. Adhesion of soft materials to rough surfaces: Experimental studies, statistical analysis and modelling. Coatings 8, 350 (2018).

https://doi.org/10.3390/coatings8100350

I.A. Lyashenko, R. Pohrt. Adhesion between rigid indenter and soft rubber layer: Influence of roughness. Front. Mech. Eng. 6, 49 (2020).

https://doi.org/10.3389/fmech.2020.00049

V.L. Popov, Q. Li, I.A. Lyashenko, R. Pohrt. Adhesion and friction in hard and soft contacts: Theory and experiment. Friction 9, 1688 (2021).

https://doi.org/10.1007/s40544-020-0482-0

J.R. Parent, G.G. Adams. Adhesion-induced tangential driving force acting on a spherical particle lying on a sinusoidal surface. J. Adhesion 92, 273 (2016).

https://doi.org/10.1080/00218464.2015.1026333

I.A. Lyashenko, V.L. Popov, R. Pohrt, V. Borysiuk. Highprecision tribometer for studies of adhesive contacts. Sensors 23, 456 (2023).

https://doi.org/10.3390/s23010456

I. Lyashenko, V. Borysiuk. Stick-slip motion in the contact between soft elastomer and spherical hard steel indenter: Model explanation of superplasticity mode in metal samples with grain boundary defects. Procedia Struct. Integr. 36, 24 (2022).

https://doi.org/10.1016/j.prostr.2021.12.078

V.L. Popov, M. Heß, E. Willert. Handbook of Contact Mechanics. Exact Solutions of Axisymmetric Contact Problems (Springer, 2019) [ISBN: 978-3-662-58708-9].

https://doi.org/10.1007/978-3-662-58709-6

I.A. Lyashenko, V.L. Popov. Dissipation of mechanical energy in an oscillating adhesive contact between a hard indenter and an elastomer. Tech. Phys. Lett. 46, 1092 (2020).

https://doi.org/10.1134/S1063785020110097

I. Argatov. Mechanics of heterogeneous adhesive contacts. Int. J. Eng. Sci. 190, 103883 (2023).

https://doi.org/10.1016/j.ijengsci.2023.103883

Published

2023-07-06

How to Cite

Lyashenko, I., & Popov, V. (2023). Corrosion Effect on the Adhesive Strength of a Contact between a Hard Indenter and a Soft Elastomer: An Experimental Study. Ukrainian Journal of Physics, 68(5), 349. https://doi.org/10.15407/ujpe68.5.349

Issue

Section

Surface physics