Phenomenological Theory of Boundary Friction in the Stick-slip Mode

Authors

  • I.A. Lyashenko Sumy State University
  • A.V. Khomenko Sumy State University
  • L.S. Metlov A.A. Galkin Donetsk Institute for Physics and Engineering, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.3.278

Keywords:

-

Abstract

A deterministic theory describing the melting of an ultrathin lubricant film between two atomically smooth solid surfaces has been
developed. The lubricant state is described by introducing a parameter of excess volume that arises owing to the solid structure chaotization at its melting. The thermodynamic and shear kinds of melting are described consistently. The dependences of the stationary friction force on the lubricant temperature and the shear velocity of rubbing surfaces that move with respect to each other with a constant velocity have been analyzed. In the framework of a simple tribological model, the stick-slip mode of friction, when the lubricant periodically melts and solidifies, has been described. The influence of velocity, temperature, and load on the stick-slip friction has been analyzed. A qualitative comparison between the results obtained and experimental data has been carried out.

References

B.N.J. Persson, Sliding Friction. Physical Principles and Applications (Springer, Berlin, 1998).

H. Yoshizawa, Y.-L. Chen, and J. Israelachvili, J. Phys. Chem. 97, 4128 (1993)

https://doi.org/10.1021/j100118a033

H. Yoshizawa and J. Israelachvili, J. Phys. Chem. 97, 11300 (1993).

https://doi.org/10.1021/j100145a031

E.D. Smith, M.O. Robbins, and M. Cieplak, Phys. Rev. B 54, 8252 (1996).

https://doi.org/10.1103/PhysRevB.54.8252

V.L. Popov, Tech. Phys. 46, 605 (2001).

https://doi.org/10.1134/1.1372955

I.A. Lyashenko, A.V. Khomenko, and L.S. Metlov, Tech. Phys. 55, 1193 (2010).

https://doi.org/10.1134/S1063784210080190

J.M. Carlson and A.A. Batista, Phys. Rev. E 53, 4153 (1996).

https://doi.org/10.1103/PhysRevE.53.4153

A.V. Khomenko and O.V. Yushchenko, Phys. Rev. E 68, 036110 (2003).

https://doi.org/10.1103/PhysRevE.68.036110

A.V. Khomenko and I.A. Lyashenko, Condens. Matter Phys. 9, 695 (2006).

https://doi.org/10.5488/CMP.9.4.695

A.E. Filippov, J. Klafter, and M. Urbakh, Phys. Rev. Lett. 92, 135503 (2004).

https://doi.org/10.1103/PhysRevLett.92.135503

Z. Tshiprut, A.E. Filippov, and M. Urbakh, Phys. Rev. Lett. 95, 016101 (2005).

https://doi.org/10.1103/PhysRevLett.95.016101

A.V. Khomenko and I.A. Lyashenko, J. Frict. Wear 31, 308 (2010).

https://doi.org/10.3103/S1068366610040100

O.M. Braun and A.G. Naumovets, Surf. Sci. Rep. 60, 79 (2006).

https://doi.org/10.1016/j.surfrep.2005.10.004

A.V. Khomenko and N.V. Prodanov, Condens. Matter Phys. 11, 615 (2008).

https://doi.org/10.5488/CMP.11.4.615

A.V. Khomenko and N.V. Prodanov, Carbon 48, 1234 (2010).

https://doi.org/10.1016/j.carbon.2009.11.046

R.G. Horn, D.T. Smith, and W. Haller, Chem. Phys. Lett. 162, 404 (1989).

https://doi.org/10.1016/0009-2614(89)87066-6

A.V. Khomenko and I.A. Lyashenko, Tech. Phys. 50, 1408 (2005).

https://doi.org/10.1134/1.2131946

A.V. Khomenko and I.A. Lyashenko, Tech. Phys. 52, 1239 (2007).

https://doi.org/10.1134/S1063784207090241

A.V. Khomenko and I.A. Lyashenko, Fluct. Noise Lett. 7, L111 (2007).

https://doi.org/10.1142/S0219477507003763

A.V. Khomenko, I.A. Lyashenko, and V.N. Borisyuk, Ukr. J. Phys. 54, 1139 (2009).

A.V. Khomenko, I.A. Lyashenko, and V.N. Borisyuk, Fluct. Noise Lett. 9, 19 (2010).

https://doi.org/10.1142/S0219477510000046

A.L. Demirel and S. Granick, J. Chem. Phys. 109, 6889 (1998).

https://doi.org/10.1063/1.477256

G. Reiter, A.L. Demirel, J. Peanasky, L.L. Cai, and S. Granick, J. Chem. Phys. 101, 2606 (1994).

https://doi.org/10.1063/1.467633

J. Israelachvili, Surf. Sci. Rep. 14, 109 (1992).

https://doi.org/10.1016/0167-5729(92)90015-4

O.V. Khomenko and I.O. Lyashenko, Zh. Fiz. Dosl. 11, 268 (2007).

https://doi.org/10.30970/jps.11.268

A.V. Khomenko and I.A. Lyashenko, Phys. Sol. State 49, 936 (2007).

https://doi.org/10.1134/S1063783407050228

A.V. Khomenko and I.A. Lyashenko, Phys. Lett. A 366, 165 (2007).

https://doi.org/10.1016/j.physleta.2007.02.010

A.V. Khomenko and I.A. Lyashenko, Tech. Phys. 55, 26 (2010).

https://doi.org/10.1134/S1063784210010056

A. Lemaítre and J. Carlson, Phys. Rev. E 69, 061611 (2004).

https://doi.org/10.1103/PhysRevE.69.061611

A. Lemaítre, Phys. Rev. Lett. 89, 195503 (2002).

https://doi.org/10.1103/PhysRevLett.89.099901

L.S. Metlov and M.M. Myshlyaev, Dokl. Akad. Nauk 433, 477 (2010).

L.S. Metlov, Phys. Rev. E 81, 051121 (2010).

https://doi.org/10.1103/PhysRevE.81.051121

L.S. Metlov, Izv. Ross. Akad. Nauk Ser. Fiz. 72, 1353 (2008).

L.S. Metlov, Metallofiz. Noveish. Tekhnol. 29, 335 (2007).

A.V. Khomenko, I.A. Lyashenko, and L.S. Metlov, Metallofiz. Noveish. Tekhnol. 30, 859 (2008).

P.A. Thompson, G.S. Grest, and M.O. Robbins, Phys. Rev. Lett. 68, 3448 (1992).

https://doi.org/10.1103/PhysRevLett.68.3448

M.L. Gee, P.M. McGuiggan, and J.N. Israelachvili, J. Chem. Phys. 93, 1895 (1990).

https://doi.org/10.1063/1.459067

L.M. Kachanov, Fundamentals of the Theory of Plasticity (Dover, New York, 2004).

L.D. Landau and E.M. Lifshitz, Theory of Elasticity (Pergamon Press, New York, 1959).

G. Luengo, J. Israelachvili, S. Granick, Wear 200, 328 (1996).

https://doi.org/10.1016/S0043-1648(96)07248-1

I.N. Evdokimov and N.Yu. Eliseev, Molecular Mechanisms of Liquid and Gas Viscosity. Part 1. Basic Concepts (I.M. Gubkin Inst., Moscow, 2005) (in Russian).

Published

2022-02-15

How to Cite

Lyashenko Я., Khomenko О., & Metlov Л. (2022). Phenomenological Theory of Boundary Friction in the Stick-slip Mode. Ukrainian Journal of Physics, 56(3), 278. https://doi.org/10.15407/ujpe56.3.278

Issue

Section

General problems of theoretical physics