Effect of the Applied Electric Field on the Thermal Properties of the Relativistic Harmonic Oscillator in One Dimension

Authors

  • A. Boumali Laboratory of Theoretical and Applied Physics, Echahid Cheikh Larbi Tebessi University
  • R. Allouani Laboratory of Theoretical and Applied Physics, Echahid Cheikh Larbi Tebessi University
  • A. Bouzenada Laboratory of Theoretical and Applied Physics, Echahid Cheikh Larbi Tebessi University
  • F. Serdouk Laboratory of Theoretical and Applied Physics, Echahid Cheikh Larbi Tebessi University

DOI:

https://doi.org/10.15407/ujpe68.4.235

Keywords:

relativistic harmonic oscillator, thermal properties, external applied field, partition function, zeta function

Abstract

We study the relativistic harmonic oscillators (Dirac and Klein–Gordon ones) in a constant external electric field. The solutions obtained are exact. These solutions allowed us to focus on the effect of the external electric field on the thermal properties of such oscillators. These properties are calculated by means of the Zeta-based method. Some figures have been built to show the mentioned effect.

References

D. Ito, K. Mori, E. Carriere. An example of dynamical systems with linear trajectory. Nuovo Cimento A 51, 111, (1967).

https://doi.org/10.1007/BF02721775

M. Moshinsky, A. Szczepaniak. The Dirac oscillator. J. Phys. A: Math. Gen. 22, L817 (1989).

https://doi.org/10.1088/0305-4470/22/17/002

C. Quesne, M. Moshinsky. Symmetry Lie algebra of the Dirac oscillator. J. Phys. A: Math. Gen. 23, 2263 (1990).

https://doi.org/10.1088/0305-4470/23/12/011

S. Bruce, P. Minning. The Klein-Gordon oscillator. II Nuovo Cimento. 106, 711 (1993).

https://doi.org/10.1007/BF02787240

V.V. Dvoeglazo. Comment on "the Klein-Gordon oscillator" by S. Bruce and P. Minning. II Nuovo Cimento. 107, 1411 (1994).

https://doi.org/10.1007/BF02775780

M. Taketani, S. Sakata. On the wave equation of meson. Proc. Phys. Math. Soc. 22, 757 (1940).

H. Feshbach, F. Villars. Elementary relativistic wave mechanics of spin 0 and spin 1/2 particles. Rev. Mod. Phys. 30, 24 (1958).

https://doi.org/10.1103/RevModPhys.30.24

A. Boumali, A. Hafdallah, A. Toumi. Comment on "Energy profile of the one-dimensional Klein-Gordon oscillator". Phys. Scr. 84, 1 (2011).

https://doi.org/10.1088/0031-8949/84/03/037001

A. Boumali, H. Hassanabadi. The thermal properties of a two-dimensional Dirac oscillator under an external magnetic field. Eur. Phys. J. Plus 128, 124 (2013).

https://doi.org/10.1140/epjp/i2013-13124-y

B.P. Mandal, S. Verma. Dirac oscillator in an external magnetic field. Phys. Lett. A 374, 1021 (2010).

https://doi.org/10.1016/j.physleta.2009.12.048

B.P. Mandal, S.K. Ray. Noncommutative Dirac oscillator in an external magnetic field. Phys. Lett. A 376, 2467 (2012).

https://doi.org/10.1016/j.physleta.2012.07.001

A. Bermudez, M.A. Martin-Delgado, A. Luis. Nonrelativistic limit in the 2 + 1 Dirac oscillator: A Ramseyinterferometry effect. Phys. Rev. A 77, 063815 (2008).

https://doi.org/10.1103/PhysRevA.77.033832

O. Bertolami, J.G. Rosa, C.M.L. deArago, P. Castorina, D. Zappala. Noncommutative gravitational quantum well. Phys. Rev. D 72, 025010 (2005).

https://doi.org/10.1103/PhysRevD.72.025010

A. Boumali, L. Chetouani. Exact solutions of the Kemmer equation for a Dirac oscillator. Phys. Lett. A 346, 261 (2005).

https://doi.org/10.1016/j.physleta.2005.08.002

A. Boumali. One-dimensional thermal properties of the Kemmer oscillator. Phys. Scr. 76, 669 (2007).

https://doi.org/10.1088/0031-8949/76/6/014

A. Boumali. The one-dimensional thermal properties for the relativistic harmonic oscillators. EJTP 12, 1 (2015).

A. Boumali, F. Serdouk, S. Dilmi. Superstatistical properties of the one-dimensional Dirac oscillator. Physica. A 553, 124207 (2020).

https://doi.org/10.1016/j.physa.2020.124207

H. Hassanabadi, S.S. Hosseini, A. Boumali, S. Zarrinkamar. The statistical properties of Klein-Gordon oscillator in noncommutative space. J. Math. Phys. 55, 033502 (2014).

https://doi.org/10.1063/1.4866978

B. Mirza, M. Zarei. Non-commutative quantum mechanics and the Aharonov-Casher effect. Eur. Phys. J. C 32, 583 (2004).

https://doi.org/10.1140/epjc/s2003-01522-8

B. Mirza, R. Narimani, M. Zarei. Relativistic oscillators in a noncommutative space and in a magnetic field. Eur. Phys. J. C 48, 641 (2006).

https://doi.org/10.1140/epjc/s10052-006-0047-z

S.K. Moayedi, F. Darabi. Exact solutions of Dirac equation on a 2D gravitational background. Phy. Lett. A 322, 173 (2004).

https://doi.org/10.1016/j.physleta.2004.01.032

H. Motavalli, A.R. Akbarieh. Klein-Gordon equation for the coulomb potential in noncommutative space. Mod. Phys. Lett. A 25, 2523 (2010).

https://doi.org/10.1142/S0217732310033529

Y. Nedjadi. R.C. Barrett. A generalized Duffin-Kemmer-Petiau oscillator. J. Phys. A: Math.Gen. 31, 6717 (1998).

https://doi.org/10.1088/0305-4470/31/31/016

E. Sadurni, J.M. Torres, T.H. Seligman. Dynamics of a Dirac oscillator coupled to an external field: a new class of solvable problems. J. Phys. A: Math. Theor. 43, 285204 (2010).

https://doi.org/10.1088/1751-8113/43/28/285204

E.S. Santos, G.R. deMelo. The schrпїЅdinger and Pauli-Dirac oscillators in noncommutative phase space. Int. J. Theor. Phys. 50, 332 (2011).

https://doi.org/10.1007/s10773-010-0529-5

S. Sargolzaeipor, H. Hassanabadi, A. Boumali. Morse potential of the q-deformed in the Duffin-Kemmer-Petiau equation. Int. J. Geom. Method. Mod. Phys. 14, 1750112 (2017).

https://doi.org/10.1142/S0219887817501122

J. Wang, K. Li. Klein-Gordon oscillators in noncommutative phase space. Chinese. Phys. C 32, 803 (2008).

https://doi.org/10.1088/1674-1137/32/10/007

B.C. Lutfuoglu, J. Kriz, P. Sedaghatnia, H. Hassanabadi. The generalized Klein-Gordon oscillator in a cosmic spacetime with a space-like dislocation and the Aharonov-Bohm effect. Eur. Phys. J. Plus. 135, 691 (2020).

https://doi.org/10.1140/epjp/s13360-020-00721-0

B. Hamil, B.C. Lutfuoglu. Dunkl-Klein-Gordon equation in three-dimensions: The Klein-Gordon oscillator and Coulomb potential. Few-Body. Syst. 63, 74 (2022).

https://doi.org/10.1007/s00601-022-01776-8

B. Hamil, B.C. Lutfuoglu. Thermal properties of relativistic Dunkl oscillators. Eur. Phys. J. Plus 137, 812 (2022).

https://doi.org/10.1140/epjp/s13360-022-03055-1

A. Bermudez, M.A. Martin-Delgado, E. Solano. Exact mapping of the 2+1 Dirac oscillator onto the Jaynes- Cummings model: Ion-trap experimental proposal. Phys. Rev. A 76, 041801 (2007).

https://doi.org/10.1103/PhysRevA.76.041801

R. Blatt, C.F. Roos. Quantum simulations with trapped ions. Nature. Phys. 8, 277 (2012).

https://doi.org/10.1038/nphys2252

M.H. Pacheco, R.R. Landim, C.A.S. Almeida. Onedimensional Dirac oscillator in a thermal bath. Phys. Lett. A 311, 93 (2003).

https://doi.org/10.1016/S0375-9601(03)00467-5

J.A. Franco-Villafane, E. Sadurni, S. Barkhofen, U. Kuhl, F. Mortessagne, T.H. Selig-man. First experimental realization of the Dirac oscillator. Phys. Rev. Lett. 111, 170405 (2013).

https://doi.org/10.1103/PhysRevLett.111.170405

K.M. Fujiwara, Z.A. Geiger, K. Singh, R. Senaratne, S.V. Rajagopal, M. Lipatov, T. Shimasaki, D.M. Weld. Experimental realization of a relativistic harmonic oscillator. New. J. Phys. 20, 063027 (2018).

https://doi.org/10.1088/1367-2630/aacb5a

J. Yang, J. Piekarewicz. Dirac oscillator: An alternative basis for nuclear structure calculations. Phys. Rev. C 102, 054308 (2020).

https://doi.org/10.1103/PhysRevC.102.054308

H.P. Laba, V.M. Tkachuk. Exact energy spectrum of the generalized Dirac oscillator in an electric field. Eur. Phys. J. Plus 133, 279 (2018).

https://doi.org/10.1140/epjp/i2018-12099-5

E. Elizalde. Ten Physical Applications of Spectral Zeta Functions (Springer-Verlag, 1995).

A. Boumali. Thermodynamic properties of the graphene in a magnetic field via the two-dimensional Dirac oscillator. Phys. Scr. 90, 045702 (2015).

https://doi.org/10.1088/0031-8949/90/4/045702

M.-A. Dariescu, C. Dariescu. Persistent currents and critical magnetic field in planar dynamics of charged bosons. J. Phys: Condens. Matter. 19, 256203 (2007).

https://doi.org/10.1088/0953-8984/19/25/256203

M.-A. Dariescu, C. Dariescu. Chiral electrons in static fields at finite temperature. Rom. Journ. Phys. 56, 1043 (2011).

B. Mirza, R. Narimani, S. Zare. Relativistic Oscillators in a Noncommutative Space and in a Magnetic Field. Comm. Theor. Phys. 55, 405 (2011).

https://doi.org/10.1088/0253-6102/55/3/06

N.A. Rao, B.A. Kagali. Energy profile of the one-dimensional Klein-Gordon oscillator. Phys. Scr. 77, 015003 (2008).

https://doi.org/10.1088/0031-8949/77/01/015003

J. Schwinger. On Gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951).

https://doi.org/10.1103/PhysRev.82.664

M. Abramowitz, I.A. Stegun. Handbook of Mathematical Functions (Dover, 1965).

R.B. Paris, D. Kaminski. Asymptotics and Mellin-Barnes Integrals (Cambridge University Press, 2001), Vol. 85.

https://doi.org/10.1017/CBO9780511546662

G. Andrews, R. Askey, R. Roy. Special Functions (Cambridge University Press, 1999).

https://doi.org/10.1017/CBO9781107325937

A.M. Frassino, D. Marinelli, O. Panella, P. Roy. Thermodynamics of quantum phase transitions of a Dirac oscillator in a homogenous magnetic field. J. Phys. A: Math. Theor. 53, 185204 (2020).

https://doi.org/10.1088/1751-8121/ab7df7

L.L. Foldy. S. Wouthuysen. On the Dirac theory of spin 1/2 particles and its non-relativistic limit . Phys. Rev. 78, 29 (1950).

https://doi.org/10.1103/PhysRev.78.29

A.G. Nikitin. On exact Foldy-Wouthuysen transformation. J. Phys. A: Math. Gen. 31, 3297 (1998).

https://doi.org/10.1088/0305-4470/31/14/015

M.H. Pacheko, R.V. Maluf, C.A.S. Almeida, R.R. Landim. Three-dimensional Dirac oscillator in a thermal bath. Eur. Phys. Lett. 108, 10005 (2014).

https://doi.org/10.1209/0295-5075/108/10005

Downloads

Published

2023-06-14

How to Cite

Boumali, A., Allouani, R., Bouzenada, A., & Serdouk, F. (2023). Effect of the Applied Electric Field on the Thermal Properties of the Relativistic Harmonic Oscillator in One Dimension. Ukrainian Journal of Physics, 68(4), 235. https://doi.org/10.15407/ujpe68.4.235

Issue

Section

General physics