Estimation of Electron Impact Ionization Rates of Li Using a Non-Maxwellian Distribution Function


  • S. Dilmi University of El Oued, Fa. Exact Sciences, Lab. in Operator Theory and PDE
  • A. Boumali Laboratoire de Physique Appliqu´ee et Th´eorique Universit´e Larbi-T´ebessi



code FAC, ionization cross-section, distribution function, ionization rate, nonMaxwellian distribution


We report an estimate of the cross-section and rate of electron-impact ionization of Li. The FAC code (Flexible Atomic Code) is used in order to determine the cross-section and to calculate the level of energy. We evaluate the effect of electron energy distribution functions on the measurement of the ionization rate for a non-Maxwellian energy distribution, if the fraction of hot electrons is small. In several types of plasma, it has been observed that certain (hot) electrons are governed by a non-Maxwellian energy distribution. These electrons affect the line spectra and other characteristics of plasma. By using a non-Maxwellian distribution of energies, we revealed the sensitivity of the electron-impact ionization rate of Li to types of the electron energy distribution and to the fraction of hot electrons.


D. Salzman. Atomic Physics in Hot Plasmas (Oxford University Press, 1998).

A.S. Shlyaptseva, S.B. Hansen, V.L. Kantsyrev, D.A. Fedin, N. Ouart, K.B. Fournier, U.I. Safronova. Advanced spectroscopic analysis of 0.8-1.0-MA Mo x pinches and the influence of plasma electron beams on L-shell spectra of Mo ions. Phys. Rev. E 67, 026409 (2003).

J. Colgan, H.L. Zhang, C.J. Fontes. Electron-impact excitation and ionization cross-sections for the Si, Cl, and Ar isonuclear sequences. Phys. Rev. A 77, 062704 (2008).

M. Davoudabadi, J.S. Shrimpton, F. Mashayek. On accuracy and performance of high-order finite volume methods in local mean energy model of non-thermal plasmas. J. Comp. Phys. 228, 2468 (2009).

R. Bartiromo, F. Bombarda, R. Giannella. Spectroscopic study of nonthermal plasmas. Phys. Rev. A 32, 531 (1985).

D. Mihalas, M E. Stone. Statistical equilibrium model atmospheres for early-type stars. III. Hydrogen and helium continua. Astrophys. J. 151, 293 (1968).

M.A. Mahmoud, Kh.A. Hamam. Studies of electron energy distribution function (EEDF) in lithium vapor excitation at 2S → 3D two-photon resonance. O. P. J 4, 195 (2014).

S. Dilmi, A. Boumali. Influence of the electron energy distribution function on the calculation of ionization rate in hot plasma. U.P.B. Sci. Bull. Series A 79, 249 (2017).

T. Kato, E. Asano. Comparison of recombination rate coefficients given by empirical formulas for ions from hydrogen through nickel NIFS-Data-Series 14, (1999).

W. Lotz. Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions from hydrogen to calcium. Zeitschr. f. Physik. 216, 241 (1968).

M. Arnaud, R. Rothenflug. An updated evaluation of recombination and ionization rates. Astron. Astrophys. Supp. Ser. 60, 425 (1985).

S.M. Younger. Electron impact ionization rate coefficients and cross-sections for highly ionized iron. J. Quant. Spectrosc. Radiat. Transfer. 27, 541 (1982).

S.M. Younger. Electron-impact ionization cross-sections for highly ionized hydrogen- and lithium-like atoms. Phys. Rev. A 22, 111 (1980).

W. Lotz. Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions. Astrophys. J. Supp. 14, 207 (1967).

T.D. Mark, G.H. Dunn. Electron Impact Ionization (Springer, 1985).

R.S. Freund, L.C. Pitchford, B.V. McKay, A. Chutjian, S. Trajmar. Swarm Studies and Inelastic Electron Molecule Collisions (Springer, 1987).

J.L.S. Lino. cross-sections for electron-impact excitation of neutral atoms. Rev. Mex. Fis. 63, 190 (2017).

M.F. Gu. FAC 1.0.7.

M.F. Gu. The flexible atomic code. Can. J. Phys. 86, 675 (2008).

D.L. Moores, H. Nussbaumer. The ionization of Li+ and Mg+ by electron impact. J. Phys. B: At. Mol. Phys. 3, 161 (1970).

M. Mattioli, G. Mazzitelli, M. Finkenthal, P. Mazzotta, K.B. Fournier, J. Kaastra, M.E .Puiatti. Updating of ionization data for ionization balance evaluations of atoms and ions for the elements hydrogen to germanium. J. Phys. B:

At. Mol. Opt. Phys. 40, 3569 (2007).

M.S. Pindzola, D.M. Mitnik, J. Colgan, D.C. Griffin. Electron-impact ionization of Li+ Phys. Rev. A 61, 052712 (2000).

A. Muller, G. Hofmann, B. Weissbecker, M. Stenke, K. Tinschert, M. Wagner, E. Salzborn. Correlated twoelectron transitions in electron-impact ionization of Li+ ions. Phys. Rev. Lett. 63, 758 (1989).

B. Peart, K.T. Dolder. Measurements of cross-sections for the ionization of Li+ and Ba+ ions by electron impact. J. Phys. B: At. Mol. Phys. 1 , 872 (1968).

J.B. Wareing, K.T. Dolder. A measurement of the crosssection for ionization of Li+ to Li2+ by electron impact. Proc. Phys. Soc. 91, 887 (1967).

W.C. Lineberger, J.W. Hooper, E.W. McDaniel. Absolute cross-sections for single ionization of alkali ions by electron impact. I. Description of Apparatus and Li+ Results. Phys. Rev. 141, 151 (1966).

A. Borovik Jr, A. Muller, S. Schippers, I. Bray, D.V. Fursa. Electron impact ionization of ground-state and metastable Li+ ions. J. Phys. B: At. Mol. Opt. Phys. 42, 025203 (2009).

S.B. Hansen, A.S. Shlyaptseva. Effects of the electron energy distribution function on modeled x-ray spectra. Phys. Rev. E 70, 036402 (2004).

A. Escarguel, F.B. Rosmej, C. Brault, T.H. Pierre, R. Stamm, K. Quotb. Influence of hot electrons on radiative properties of a helium plasma. Plasma Phys. Control. Fusion 49, 85 (2007).




How to Cite

Dilmi, S., & Boumali, A. (2021). Estimation of Electron Impact Ionization Rates of Li Using a Non-Maxwellian Distribution Function. Ukrainian Journal of Physics, 66(8), 691.



Plasma physics