Вплив зовнішнього електричного поля на теплові властивості одновимірного релятивістичного гармонічного осцилятора

Автор(и)

  • A. Boumali Laboratory of Theoretical and Applied Physics, Echahid Cheikh Larbi Tebessi University
  • R. Allouani Laboratory of Theoretical and Applied Physics, Echahid Cheikh Larbi Tebessi University
  • A. Bouzenada Laboratory of Theoretical and Applied Physics, Echahid Cheikh Larbi Tebessi University
  • F. Serdouk Laboratory of Theoretical and Applied Physics, Echahid Cheikh Larbi Tebessi University

DOI:

https://doi.org/10.15407/ujpe68.4.235

Ключові слова:

релятивiстичний гармонiчний осцилятор, тепловi властивостi, зовнiшнє поле, статистична сума, дзета-функцiя

Анотація

Дослiджено релятивiстичнi гармонiчнi осцилятори Дiрака та Клейна–Гордона в постiйному зовнiшньому електричному полi. Отримано точнi розв’язки, якi дозволяють розглянути вплив зовнiшнього електричного поля на тепловi властивостi цих осциляторiв. Такi властивостi розраховано з використанням дзета-функцiї. Побудовано графiки, якi демонструють згаданий вплив.

Посилання

D. Ito, K. Mori, E. Carriere. An example of dynamical systems with linear trajectory. Nuovo Cimento A 51, 111, (1967).

https://doi.org/10.1007/BF02721775

M. Moshinsky, A. Szczepaniak. The Dirac oscillator. J. Phys. A: Math. Gen. 22, L817 (1989).

https://doi.org/10.1088/0305-4470/22/17/002

C. Quesne, M. Moshinsky. Symmetry Lie algebra of the Dirac oscillator. J. Phys. A: Math. Gen. 23, 2263 (1990).

https://doi.org/10.1088/0305-4470/23/12/011

S. Bruce, P. Minning. The Klein-Gordon oscillator. II Nuovo Cimento. 106, 711 (1993).

https://doi.org/10.1007/BF02787240

V.V. Dvoeglazo. Comment on "the Klein-Gordon oscillator" by S. Bruce and P. Minning. II Nuovo Cimento. 107, 1411 (1994).

https://doi.org/10.1007/BF02775780

M. Taketani, S. Sakata. On the wave equation of meson. Proc. Phys. Math. Soc. 22, 757 (1940).

H. Feshbach, F. Villars. Elementary relativistic wave mechanics of spin 0 and spin 1/2 particles. Rev. Mod. Phys. 30, 24 (1958).

https://doi.org/10.1103/RevModPhys.30.24

A. Boumali, A. Hafdallah, A. Toumi. Comment on "Energy profile of the one-dimensional Klein-Gordon oscillator". Phys. Scr. 84, 1 (2011).

https://doi.org/10.1088/0031-8949/84/03/037001

A. Boumali, H. Hassanabadi. The thermal properties of a two-dimensional Dirac oscillator under an external magnetic field. Eur. Phys. J. Plus 128, 124 (2013).

https://doi.org/10.1140/epjp/i2013-13124-y

B.P. Mandal, S. Verma. Dirac oscillator in an external magnetic field. Phys. Lett. A 374, 1021 (2010).

https://doi.org/10.1016/j.physleta.2009.12.048

B.P. Mandal, S.K. Ray. Noncommutative Dirac oscillator in an external magnetic field. Phys. Lett. A 376, 2467 (2012).

https://doi.org/10.1016/j.physleta.2012.07.001

A. Bermudez, M.A. Martin-Delgado, A. Luis. Nonrelativistic limit in the 2 + 1 Dirac oscillator: A Ramseyinterferometry effect. Phys. Rev. A 77, 063815 (2008).

https://doi.org/10.1103/PhysRevA.77.033832

O. Bertolami, J.G. Rosa, C.M.L. deArago, P. Castorina, D. Zappala. Noncommutative gravitational quantum well. Phys. Rev. D 72, 025010 (2005).

https://doi.org/10.1103/PhysRevD.72.025010

A. Boumali, L. Chetouani. Exact solutions of the Kemmer equation for a Dirac oscillator. Phys. Lett. A 346, 261 (2005).

https://doi.org/10.1016/j.physleta.2005.08.002

A. Boumali. One-dimensional thermal properties of the Kemmer oscillator. Phys. Scr. 76, 669 (2007).

https://doi.org/10.1088/0031-8949/76/6/014

A. Boumali. The one-dimensional thermal properties for the relativistic harmonic oscillators. EJTP 12, 1 (2015).

A. Boumali, F. Serdouk, S. Dilmi. Superstatistical properties of the one-dimensional Dirac oscillator. Physica. A 553, 124207 (2020).

https://doi.org/10.1016/j.physa.2020.124207

H. Hassanabadi, S.S. Hosseini, A. Boumali, S. Zarrinkamar. The statistical properties of Klein-Gordon oscillator in noncommutative space. J. Math. Phys. 55, 033502 (2014).

https://doi.org/10.1063/1.4866978

B. Mirza, M. Zarei. Non-commutative quantum mechanics and the Aharonov-Casher effect. Eur. Phys. J. C 32, 583 (2004).

https://doi.org/10.1140/epjc/s2003-01522-8

B. Mirza, R. Narimani, M. Zarei. Relativistic oscillators in a noncommutative space and in a magnetic field. Eur. Phys. J. C 48, 641 (2006).

https://doi.org/10.1140/epjc/s10052-006-0047-z

S.K. Moayedi, F. Darabi. Exact solutions of Dirac equation on a 2D gravitational background. Phy. Lett. A 322, 173 (2004).

https://doi.org/10.1016/j.physleta.2004.01.032

H. Motavalli, A.R. Akbarieh. Klein-Gordon equation for the coulomb potential in noncommutative space. Mod. Phys. Lett. A 25, 2523 (2010).

https://doi.org/10.1142/S0217732310033529

Y. Nedjadi. R.C. Barrett. A generalized Duffin-Kemmer-Petiau oscillator. J. Phys. A: Math.Gen. 31, 6717 (1998).

https://doi.org/10.1088/0305-4470/31/31/016

E. Sadurni, J.M. Torres, T.H. Seligman. Dynamics of a Dirac oscillator coupled to an external field: a new class of solvable problems. J. Phys. A: Math. Theor. 43, 285204 (2010).

https://doi.org/10.1088/1751-8113/43/28/285204

E.S. Santos, G.R. deMelo. The schrпїЅdinger and Pauli-Dirac oscillators in noncommutative phase space. Int. J. Theor. Phys. 50, 332 (2011).

https://doi.org/10.1007/s10773-010-0529-5

S. Sargolzaeipor, H. Hassanabadi, A. Boumali. Morse potential of the q-deformed in the Duffin-Kemmer-Petiau equation. Int. J. Geom. Method. Mod. Phys. 14, 1750112 (2017).

https://doi.org/10.1142/S0219887817501122

J. Wang, K. Li. Klein-Gordon oscillators in noncommutative phase space. Chinese. Phys. C 32, 803 (2008).

https://doi.org/10.1088/1674-1137/32/10/007

B.C. Lutfuoglu, J. Kriz, P. Sedaghatnia, H. Hassanabadi. The generalized Klein-Gordon oscillator in a cosmic spacetime with a space-like dislocation and the Aharonov-Bohm effect. Eur. Phys. J. Plus. 135, 691 (2020).

https://doi.org/10.1140/epjp/s13360-020-00721-0

B. Hamil, B.C. Lutfuoglu. Dunkl-Klein-Gordon equation in three-dimensions: The Klein-Gordon oscillator and Coulomb potential. Few-Body. Syst. 63, 74 (2022).

https://doi.org/10.1007/s00601-022-01776-8

B. Hamil, B.C. Lutfuoglu. Thermal properties of relativistic Dunkl oscillators. Eur. Phys. J. Plus 137, 812 (2022).

https://doi.org/10.1140/epjp/s13360-022-03055-1

A. Bermudez, M.A. Martin-Delgado, E. Solano. Exact mapping of the 2+1 Dirac oscillator onto the Jaynes- Cummings model: Ion-trap experimental proposal. Phys. Rev. A 76, 041801 (2007).

https://doi.org/10.1103/PhysRevA.76.041801

R. Blatt, C.F. Roos. Quantum simulations with trapped ions. Nature. Phys. 8, 277 (2012).

https://doi.org/10.1038/nphys2252

M.H. Pacheco, R.R. Landim, C.A.S. Almeida. Onedimensional Dirac oscillator in a thermal bath. Phys. Lett. A 311, 93 (2003).

https://doi.org/10.1016/S0375-9601(03)00467-5

J.A. Franco-Villafane, E. Sadurni, S. Barkhofen, U. Kuhl, F. Mortessagne, T.H. Selig-man. First experimental realization of the Dirac oscillator. Phys. Rev. Lett. 111, 170405 (2013).

https://doi.org/10.1103/PhysRevLett.111.170405

K.M. Fujiwara, Z.A. Geiger, K. Singh, R. Senaratne, S.V. Rajagopal, M. Lipatov, T. Shimasaki, D.M. Weld. Experimental realization of a relativistic harmonic oscillator. New. J. Phys. 20, 063027 (2018).

https://doi.org/10.1088/1367-2630/aacb5a

J. Yang, J. Piekarewicz. Dirac oscillator: An alternative basis for nuclear structure calculations. Phys. Rev. C 102, 054308 (2020).

https://doi.org/10.1103/PhysRevC.102.054308

H.P. Laba, V.M. Tkachuk. Exact energy spectrum of the generalized Dirac oscillator in an electric field. Eur. Phys. J. Plus 133, 279 (2018).

https://doi.org/10.1140/epjp/i2018-12099-5

E. Elizalde. Ten Physical Applications of Spectral Zeta Functions (Springer-Verlag, 1995).

A. Boumali. Thermodynamic properties of the graphene in a magnetic field via the two-dimensional Dirac oscillator. Phys. Scr. 90, 045702 (2015).

https://doi.org/10.1088/0031-8949/90/4/045702

M.-A. Dariescu, C. Dariescu. Persistent currents and critical magnetic field in planar dynamics of charged bosons. J. Phys: Condens. Matter. 19, 256203 (2007).

https://doi.org/10.1088/0953-8984/19/25/256203

M.-A. Dariescu, C. Dariescu. Chiral electrons in static fields at finite temperature. Rom. Journ. Phys. 56, 1043 (2011).

B. Mirza, R. Narimani, S. Zare. Relativistic Oscillators in a Noncommutative Space and in a Magnetic Field. Comm. Theor. Phys. 55, 405 (2011).

https://doi.org/10.1088/0253-6102/55/3/06

N.A. Rao, B.A. Kagali. Energy profile of the one-dimensional Klein-Gordon oscillator. Phys. Scr. 77, 015003 (2008).

https://doi.org/10.1088/0031-8949/77/01/015003

J. Schwinger. On Gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951).

https://doi.org/10.1103/PhysRev.82.664

M. Abramowitz, I.A. Stegun. Handbook of Mathematical Functions (Dover, 1965).

R.B. Paris, D. Kaminski. Asymptotics and Mellin-Barnes Integrals (Cambridge University Press, 2001), Vol. 85.

https://doi.org/10.1017/CBO9780511546662

G. Andrews, R. Askey, R. Roy. Special Functions (Cambridge University Press, 1999).

https://doi.org/10.1017/CBO9781107325937

A.M. Frassino, D. Marinelli, O. Panella, P. Roy. Thermodynamics of quantum phase transitions of a Dirac oscillator in a homogenous magnetic field. J. Phys. A: Math. Theor. 53, 185204 (2020).

https://doi.org/10.1088/1751-8121/ab7df7

L.L. Foldy. S. Wouthuysen. On the Dirac theory of spin 1/2 particles and its non-relativistic limit . Phys. Rev. 78, 29 (1950).

https://doi.org/10.1103/PhysRev.78.29

A.G. Nikitin. On exact Foldy-Wouthuysen transformation. J. Phys. A: Math. Gen. 31, 3297 (1998).

https://doi.org/10.1088/0305-4470/31/14/015

M.H. Pacheko, R.V. Maluf, C.A.S. Almeida, R.R. Landim. Three-dimensional Dirac oscillator in a thermal bath. Eur. Phys. Lett. 108, 10005 (2014).

https://doi.org/10.1209/0295-5075/108/10005

Downloads

Опубліковано

2023-06-14

Як цитувати

Boumali, A., Allouani, R., Bouzenada, A., & Serdouk, F. (2023). Вплив зовнішнього електричного поля на теплові властивості одновимірного релятивістичного гармонічного осцилятора. Український фізичний журнал, 68(4), 235. https://doi.org/10.15407/ujpe68.4.235

Номер

Розділ

Загальна фізика