Effect of the Applied Electric Field on the Thermal Properties of the Relativistic Harmonic Oscillator in One Dimension
DOI:
https://doi.org/10.15407/ujpe68.4.235Keywords:
relativistic harmonic oscillator, thermal properties, external applied field, partition function, zeta functionAbstract
We study the relativistic harmonic oscillators (Dirac and Klein–Gordon ones) in a constant external electric field. The solutions obtained are exact. These solutions allowed us to focus on the effect of the external electric field on the thermal properties of such oscillators. These properties are calculated by means of the Zeta-based method. Some figures have been built to show the mentioned effect.
References
D. Ito, K. Mori, E. Carriere. An example of dynamical systems with linear trajectory. Nuovo Cimento A 51, 111, (1967).
https://doi.org/10.1007/BF02721775
M. Moshinsky, A. Szczepaniak. The Dirac oscillator. J. Phys. A: Math. Gen. 22, L817 (1989).
https://doi.org/10.1088/0305-4470/22/17/002
C. Quesne, M. Moshinsky. Symmetry Lie algebra of the Dirac oscillator. J. Phys. A: Math. Gen. 23, 2263 (1990).
https://doi.org/10.1088/0305-4470/23/12/011
S. Bruce, P. Minning. The Klein-Gordon oscillator. II Nuovo Cimento. 106, 711 (1993).
https://doi.org/10.1007/BF02787240
V.V. Dvoeglazo. Comment on "the Klein-Gordon oscillator" by S. Bruce and P. Minning. II Nuovo Cimento. 107, 1411 (1994).
https://doi.org/10.1007/BF02775780
M. Taketani, S. Sakata. On the wave equation of meson. Proc. Phys. Math. Soc. 22, 757 (1940).
H. Feshbach, F. Villars. Elementary relativistic wave mechanics of spin 0 and spin 1/2 particles. Rev. Mod. Phys. 30, 24 (1958).
https://doi.org/10.1103/RevModPhys.30.24
A. Boumali, A. Hafdallah, A. Toumi. Comment on "Energy profile of the one-dimensional Klein-Gordon oscillator". Phys. Scr. 84, 1 (2011).
https://doi.org/10.1088/0031-8949/84/03/037001
A. Boumali, H. Hassanabadi. The thermal properties of a two-dimensional Dirac oscillator under an external magnetic field. Eur. Phys. J. Plus 128, 124 (2013).
https://doi.org/10.1140/epjp/i2013-13124-y
B.P. Mandal, S. Verma. Dirac oscillator in an external magnetic field. Phys. Lett. A 374, 1021 (2010).
https://doi.org/10.1016/j.physleta.2009.12.048
B.P. Mandal, S.K. Ray. Noncommutative Dirac oscillator in an external magnetic field. Phys. Lett. A 376, 2467 (2012).
https://doi.org/10.1016/j.physleta.2012.07.001
A. Bermudez, M.A. Martin-Delgado, A. Luis. Nonrelativistic limit in the 2 + 1 Dirac oscillator: A Ramseyinterferometry effect. Phys. Rev. A 77, 063815 (2008).
https://doi.org/10.1103/PhysRevA.77.033832
O. Bertolami, J.G. Rosa, C.M.L. deArago, P. Castorina, D. Zappala. Noncommutative gravitational quantum well. Phys. Rev. D 72, 025010 (2005).
https://doi.org/10.1103/PhysRevD.72.025010
A. Boumali, L. Chetouani. Exact solutions of the Kemmer equation for a Dirac oscillator. Phys. Lett. A 346, 261 (2005).
https://doi.org/10.1016/j.physleta.2005.08.002
A. Boumali. One-dimensional thermal properties of the Kemmer oscillator. Phys. Scr. 76, 669 (2007).
https://doi.org/10.1088/0031-8949/76/6/014
A. Boumali. The one-dimensional thermal properties for the relativistic harmonic oscillators. EJTP 12, 1 (2015).
A. Boumali, F. Serdouk, S. Dilmi. Superstatistical properties of the one-dimensional Dirac oscillator. Physica. A 553, 124207 (2020).
https://doi.org/10.1016/j.physa.2020.124207
H. Hassanabadi, S.S. Hosseini, A. Boumali, S. Zarrinkamar. The statistical properties of Klein-Gordon oscillator in noncommutative space. J. Math. Phys. 55, 033502 (2014).
https://doi.org/10.1063/1.4866978
B. Mirza, M. Zarei. Non-commutative quantum mechanics and the Aharonov-Casher effect. Eur. Phys. J. C 32, 583 (2004).
https://doi.org/10.1140/epjc/s2003-01522-8
B. Mirza, R. Narimani, M. Zarei. Relativistic oscillators in a noncommutative space and in a magnetic field. Eur. Phys. J. C 48, 641 (2006).
https://doi.org/10.1140/epjc/s10052-006-0047-z
S.K. Moayedi, F. Darabi. Exact solutions of Dirac equation on a 2D gravitational background. Phy. Lett. A 322, 173 (2004).
https://doi.org/10.1016/j.physleta.2004.01.032
H. Motavalli, A.R. Akbarieh. Klein-Gordon equation for the coulomb potential in noncommutative space. Mod. Phys. Lett. A 25, 2523 (2010).
https://doi.org/10.1142/S0217732310033529
Y. Nedjadi. R.C. Barrett. A generalized Duffin-Kemmer-Petiau oscillator. J. Phys. A: Math.Gen. 31, 6717 (1998).
https://doi.org/10.1088/0305-4470/31/31/016
E. Sadurni, J.M. Torres, T.H. Seligman. Dynamics of a Dirac oscillator coupled to an external field: a new class of solvable problems. J. Phys. A: Math. Theor. 43, 285204 (2010).
https://doi.org/10.1088/1751-8113/43/28/285204
E.S. Santos, G.R. deMelo. The schrпїЅdinger and Pauli-Dirac oscillators in noncommutative phase space. Int. J. Theor. Phys. 50, 332 (2011).
https://doi.org/10.1007/s10773-010-0529-5
S. Sargolzaeipor, H. Hassanabadi, A. Boumali. Morse potential of the q-deformed in the Duffin-Kemmer-Petiau equation. Int. J. Geom. Method. Mod. Phys. 14, 1750112 (2017).
https://doi.org/10.1142/S0219887817501122
J. Wang, K. Li. Klein-Gordon oscillators in noncommutative phase space. Chinese. Phys. C 32, 803 (2008).
https://doi.org/10.1088/1674-1137/32/10/007
B.C. Lutfuoglu, J. Kriz, P. Sedaghatnia, H. Hassanabadi. The generalized Klein-Gordon oscillator in a cosmic spacetime with a space-like dislocation and the Aharonov-Bohm effect. Eur. Phys. J. Plus. 135, 691 (2020).
https://doi.org/10.1140/epjp/s13360-020-00721-0
B. Hamil, B.C. Lutfuoglu. Dunkl-Klein-Gordon equation in three-dimensions: The Klein-Gordon oscillator and Coulomb potential. Few-Body. Syst. 63, 74 (2022).
https://doi.org/10.1007/s00601-022-01776-8
B. Hamil, B.C. Lutfuoglu. Thermal properties of relativistic Dunkl oscillators. Eur. Phys. J. Plus 137, 812 (2022).
https://doi.org/10.1140/epjp/s13360-022-03055-1
A. Bermudez, M.A. Martin-Delgado, E. Solano. Exact mapping of the 2+1 Dirac oscillator onto the Jaynes- Cummings model: Ion-trap experimental proposal. Phys. Rev. A 76, 041801 (2007).
https://doi.org/10.1103/PhysRevA.76.041801
R. Blatt, C.F. Roos. Quantum simulations with trapped ions. Nature. Phys. 8, 277 (2012).
https://doi.org/10.1038/nphys2252
M.H. Pacheco, R.R. Landim, C.A.S. Almeida. Onedimensional Dirac oscillator in a thermal bath. Phys. Lett. A 311, 93 (2003).
https://doi.org/10.1016/S0375-9601(03)00467-5
J.A. Franco-Villafane, E. Sadurni, S. Barkhofen, U. Kuhl, F. Mortessagne, T.H. Selig-man. First experimental realization of the Dirac oscillator. Phys. Rev. Lett. 111, 170405 (2013).
https://doi.org/10.1103/PhysRevLett.111.170405
K.M. Fujiwara, Z.A. Geiger, K. Singh, R. Senaratne, S.V. Rajagopal, M. Lipatov, T. Shimasaki, D.M. Weld. Experimental realization of a relativistic harmonic oscillator. New. J. Phys. 20, 063027 (2018).
https://doi.org/10.1088/1367-2630/aacb5a
J. Yang, J. Piekarewicz. Dirac oscillator: An alternative basis for nuclear structure calculations. Phys. Rev. C 102, 054308 (2020).
https://doi.org/10.1103/PhysRevC.102.054308
H.P. Laba, V.M. Tkachuk. Exact energy spectrum of the generalized Dirac oscillator in an electric field. Eur. Phys. J. Plus 133, 279 (2018).
https://doi.org/10.1140/epjp/i2018-12099-5
E. Elizalde. Ten Physical Applications of Spectral Zeta Functions (Springer-Verlag, 1995).
A. Boumali. Thermodynamic properties of the graphene in a magnetic field via the two-dimensional Dirac oscillator. Phys. Scr. 90, 045702 (2015).
https://doi.org/10.1088/0031-8949/90/4/045702
M.-A. Dariescu, C. Dariescu. Persistent currents and critical magnetic field in planar dynamics of charged bosons. J. Phys: Condens. Matter. 19, 256203 (2007).
https://doi.org/10.1088/0953-8984/19/25/256203
M.-A. Dariescu, C. Dariescu. Chiral electrons in static fields at finite temperature. Rom. Journ. Phys. 56, 1043 (2011).
B. Mirza, R. Narimani, S. Zare. Relativistic Oscillators in a Noncommutative Space and in a Magnetic Field. Comm. Theor. Phys. 55, 405 (2011).
https://doi.org/10.1088/0253-6102/55/3/06
N.A. Rao, B.A. Kagali. Energy profile of the one-dimensional Klein-Gordon oscillator. Phys. Scr. 77, 015003 (2008).
https://doi.org/10.1088/0031-8949/77/01/015003
J. Schwinger. On Gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951).
https://doi.org/10.1103/PhysRev.82.664
M. Abramowitz, I.A. Stegun. Handbook of Mathematical Functions (Dover, 1965).
R.B. Paris, D. Kaminski. Asymptotics and Mellin-Barnes Integrals (Cambridge University Press, 2001), Vol. 85.
https://doi.org/10.1017/CBO9780511546662
G. Andrews, R. Askey, R. Roy. Special Functions (Cambridge University Press, 1999).
https://doi.org/10.1017/CBO9781107325937
A.M. Frassino, D. Marinelli, O. Panella, P. Roy. Thermodynamics of quantum phase transitions of a Dirac oscillator in a homogenous magnetic field. J. Phys. A: Math. Theor. 53, 185204 (2020).
https://doi.org/10.1088/1751-8121/ab7df7
L.L. Foldy. S. Wouthuysen. On the Dirac theory of spin 1/2 particles and its non-relativistic limit . Phys. Rev. 78, 29 (1950).
https://doi.org/10.1103/PhysRev.78.29
A.G. Nikitin. On exact Foldy-Wouthuysen transformation. J. Phys. A: Math. Gen. 31, 3297 (1998).
https://doi.org/10.1088/0305-4470/31/14/015
M.H. Pacheko, R.V. Maluf, C.A.S. Almeida, R.R. Landim. Three-dimensional Dirac oscillator in a thermal bath. Eur. Phys. Lett. 108, 10005 (2014).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.