Dynamical and Macroscopic Descriptions of the Strongly Driven Gas Medium of Interacting Atoms

Authors

  • A.S. Sizhuk Physics Department, Texas A&M University
  • S.M. Yezhov Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe57.8.864

Keywords:

-

Abstract

This paper is devoted to constructing the microscopic and macroscopic theories of a system of N interacting two-level atoms coupled with a strong near resonant pumping field and a weak probe electromagnetic one. Microscopic kinetic equations for the density matrix elements of N-atom states including atomic motion are deduced with regard for the atom-field and atom-atom interactions. The corresponding macroscopic kinetics is built for the one- and
two-particle density matrix distribution functions. The self-consistent system of macroscopic one-particle equations for the averaged density matrix elements along with the Maxwell equations allow us to describe the emission and absorption properties of the system and to explain the dependence of the optical properties on the particle density in terms of the "long-range" dipole-dipole interaction between the atoms.

References

V.A. Sautenkov, H. Van Kampen, E.R. Eliel, and J.P. Woerdman, Phys. Rev. Lett. 77, 3327 (1996).

https://doi.org/10.1103/PhysRevLett.77.3327

H. Li, V.A. Sautenkov, Y.V. Rostovtsev, and M.O. Scully, J. Phys. B: At. Mol. Opt. Phys. 42, 065203 (2009).

https://doi.org/10.1088/0953-4075/42/6/065203

P.R. Hemmer, N.P. Bigelow, D.P. Katz, M.S. Shahriar, L. DeSalvo, and R. Bonifacio, Phys. Rev. Lett. 77, 1468 (1996).

https://doi.org/10.1103/PhysRevLett.77.1468

J.R. Murray and A. Javan, J. Mol. Spectr. 42, 1 (1972).

https://doi.org/10.1016/0022-2852(72)90139-7

R.S. Eng, A.R. Calawa, T.C. Harman, P.L. Kelley, and A. Javan, Appl. Phys. Lett. 21, 303 (1972).

https://doi.org/10.1063/1.1654387

J. Huennekens and A. Gallagher, Phys. Rev. A 27, 1851 (1983).

https://doi.org/10.1103/PhysRevA.27.771

P.W. Anderson, Phys. Rev. 76, 647 (1949).

https://doi.org/10.1103/PhysRev.76.647

R.H. Dicke, Phys. Rev. 89, 472 (1953).

https://doi.org/10.1103/PhysRev.89.472

M. Baranger, Phys. Rev. 111, 481 (1958).

https://doi.org/10.1103/PhysRev.111.481

H.R. Griem, M. Baranger, A.C. Kolb, and G. Oertel, Phys. Rev. 125, 177 (1962).

https://doi.org/10.1103/PhysRev.125.177

Yu.A. Vdovin and V.M. Galitskii, JETP 25, 894 (1967).

H.R. Zaidi, Can. J. Phys. 55, 1229 (1977).

https://doi.org/10.1139/p77-159

A.P. Kazantsev, JETP 24, 1183 (1966).

J. Cooper, Rev. Mod. Phys. 39, 167 (1967).

https://doi.org/10.1103/RevModPhys.39.167

M. Fleischhauer and S.F. Yelin, Phys. Rev. A 59, 2427 (1999).

https://doi.org/10.1103/PhysRevA.59.2427

S.G. Rautian, JETP 91, 713 (2000).

https://doi.org/10.1134/1.1326964

E.A. Titov, Opt. Spectr. 96, 869 (2004).

https://doi.org/10.1134/1.1771421

B.R. Mollow, Phys. Rev. A 5, 2217 (1972).

https://doi.org/10.1103/PhysRevA.5.2217

M.O. Scully and S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).

https://doi.org/10.1017/CBO9780511813993

Z. Ficek and S. Swain, Quantum Interference and Coherence. Theory and Experiments (Springer, Berlin, 2004).

F.A. Vorob'ev and R.I. Sokolovskii, Zh. Prikl. Spektr. 13, 66 (1970).

R. Bonifacio, B.W.J. McNeil, N. Piovella, and G.R.M. Robb, Phys. Rev. A 61, 023807 (2000).

https://doi.org/10.1103/PhysRevA.61.023807

P.R. Berman, Phys. Rev. A 59, 585 (1999).

https://doi.org/10.1103/PhysRevA.59.585

L. De Salvo, R. Cannerozzi, R. Bonifacio, E.J. D'Angelo, and L.M. Narducci, Phys. Rev. A 52, 2342 (1995).

https://doi.org/10.1103/PhysRevA.52.2342

T. Lindvall and I. Tittonen, Phys. Rev. A 80, 032505 (2009).

https://doi.org/10.1103/PhysRevA.80.032505

T. Zigdon, A.D. Wilson-Gordon, and H. Friedmann, Phys. Rev. A 80, 033825 (2009).

https://doi.org/10.1103/PhysRevA.80.033825

R.H. Lehmberg, Phys. Rev. A 2, 883 (1970).

https://doi.org/10.1103/PhysRevA.2.883

M.J. Stephen, J. Chem. Phys. 40, 669 (1964).

https://doi.org/10.1063/1.1725188

M.S. Kim, F.A.M. de Olivera, and P.L. Knight, Opt. Commun. 70, 473 (1989).

https://doi.org/10.1016/0030-4018(89)90367-2

Th. Richter, Ann. d. Phys. 40, 234 (1983).

https://doi.org/10.1002/andp.19834950409

M. Ikram, F. Li, and M.S. Zubairy, Phys. Rev. A 75, 062336 (2007).

https://doi.org/10.1103/PhysRevA.75.062336

P.R. Berman, Appl. Phys. 6, 283 (1975).

https://doi.org/10.1007/BF00883644

L. Zhang, G.J. Yang, and Z.H. He, Phys. Lett. A 322, 166 (2004).

https://doi.org/10.1016/j.physleta.2004.01.021

M.Z. Smirnov, Quant. Electr. 30, 821 (2000).

https://doi.org/10.1070/QE2000v030n09ABEH001818

G.P. Miroshnichenko and M.Z. Smirnov, Phys. Rev. A 64, 053801 (2001).

https://doi.org/10.1103/PhysRevA.64.053801

H. Grinberg, J. Phys. Chem. B 112, 16140 (2008).

https://doi.org/10.1021/jp8075244

F. Lastra, S. Wallentowitz, M. Orszag, and M. Hernández, J. of Phys. B: Atom., Mol. and Opt. Phys. 42, 065504 (2009).

https://doi.org/10.1088/0953-4075/42/6/065504

N.N. Bogolyubov and N.N. Bogolyubov, jr., Introduction into Quantum Statistical Mechanics (Nauka, Moscow, 1984) (in Russian).

O.G. Sitenko and V.M. Malnev, Foundations of Plasma Theory (Naukova Dumka, Kiev, 1994) (in Ukrainian).

Published

2012-08-30

How to Cite

Sizhuk, A., & Yezhov, S. (2012). Dynamical and Macroscopic Descriptions of the Strongly Driven Gas Medium of Interacting Atoms. Ukrainian Journal of Physics, 57(8), 864. https://doi.org/10.15407/ujpe57.8.864

Issue

Section

General problems of theoretical physics