Relaxation of Spatially Uniform Distribution Function in the Case on Non-Uniform Energy Distribution

Authors

  • A.S. Sizhuk Texas A&M University, Physics Department
  • S.M. Yezhov Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe57.12.1250

Keywords:

-

Abstract

Relaxation processes in a model system are studied with the use of a kinetic equation. In a first approximation with respect to the concentration, an expression for the temperature as a function of the time has been derived in the spatially uniform case and for the Maxwell distribution function with a non-uniform energy distribution over the rotational and translational degrees of freedom. The relaxation time is shown to decrease, as the difference between the initial and equilibrium values of average translational kinetic energy diminishes and the equilibrium temperature grows. The time of the average  ranslational (rotational) energy relaxation to the equilibrium value is found to be reciprocal to the square root of the equilibrium temperature and to the particle concentration. For the intrinsic moment of inertia, which is equal to the moment of inertia of a spherical particle with certain effective radius, the
relaxation time is minimal. Relaxation times for some parameters of particles in the system concerned are calculated.

References

S. Chapman and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge Univ. Press, Cambridge, 1960).

H. Grad, Commun. Pure Appl. Math. 2, 331 (1949).

https://doi.org/10.1002/cpa.3160020403

S.R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

I. Muller and T. Ruggery, Extended Thermodynamics (Springer, New York, 1992).

https://doi.org/10.1007/978-1-4684-0447-0_9

D. Jou, J. Casas-Vazquez, and G. Lebon, Extended Irreversible Thermodynamics (Springer, Berlin, 1993).

https://doi.org/10.1007/978-3-642-97430-4

B.C. Eu, Kinetic Theory and Irreversible Thermodynamics (Wiley, New York, 1992).

S. Luding S, M. Huthmann, S. McNamara, and A. Zippelius, Phys. Rev. E 58, 3416 (1998).

https://doi.org/10.1103/PhysRevE.58.3416

G.S. Singh and B. Kumar, Phys. Rev. E 62, 7927 (2000).

https://doi.org/10.1103/PhysRevE.62.7927

C. Cercignani and M. Lampis, J. Stat. Phys. 53, 655 (1988).

https://doi.org/10.1007/BF01014218

C. Boursier, J. Menard, and F. Menard-Bourcin, J. Phys. Chem. A 111, 7022 (2007).

https://doi.org/10.1021/jp072377y

Sh. Green, J. Chem. Phys. 62, 2271 (1975).

https://doi.org/10.1063/1.430752

A. Sizhuk and S. Yezhov, Ukr. J. Phys. 50, 1397 (2005).

A.S. Sizhuk, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky, No. 3, 347 (2004).

A.S. Sizhuk and S.M. Yezhov, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky, No. 3, 591 (2005).

A. Sizhuk and S. Yezhov, Ukr. J. Phys. 50, 1193 (2005).

A.S. Sizhuk and S.M. Yezhov, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky, No. 3, 596 (2005).

B.I. Lev and P.M. Tomchuk, Theor. Math. Phys. 32, 101 (1977).

L.D. Landau, Zh. Eksp. Teor. Fiz. 7, 203 (1937).

A.I. Sokolovsky, V.N. Gorev, and Z.Yu. Chelbaevsky, Probl. At. Sci. Technol. No. 1, 230 (2012).

G.S. Bisnovatyi-Kogan, Zh. Prikl. Mekh.Tekhn. Fiz. No. 3, 74 (1965).

V.I. Karas' and I.F. Potapenko, Zh. Vychisl. Mat. Mat. Fiz. 46, 307 (2006).

V.Ya. Rudyak and A.A. Belkin, in Abstracts of the 3-rd International Conference "Physics of liquid matter: modern problems" (Kyiv, Ukraine, 2005), p. 57.

Published

2012-12-15

How to Cite

Sizhuk, A., & Yezhov, S. (2012). Relaxation of Spatially Uniform Distribution Function in the Case on Non-Uniform Energy Distribution. Ukrainian Journal of Physics, 57(12), 1250. https://doi.org/10.15407/ujpe57.12.1250

Issue

Section

General problems of theoretical physics