Fourier Transform Infrared Broadband Spectroscopy of the Gas Phase of HF and CO Mixtures

Authors

  • A.S. Sizhuk Physics Department, Texas A&M University

DOI:

https://doi.org/10.15407/ujpe57.5.505

Keywords:

-

Abstract

The gas phase spectra of hydrogen fluoride (HF) and carbon oxide (CO) mixtures are investigated using the Fourier transform infrared (FTIR) broadband spectroscopy technique for the region from 3838 to 3854 cm–1. The OC–HF complex bands, that can correspond to the excited intermolecular (complex) stretching and bending, are observed for the partial mixture pressures of 20 Torr of HF and 30 Torr of CO and higher. The corresponding hot bands of the second harmonic for the bending mode are observed at the total pressure of 100 Torr at –15 degree Celsius (corresponding to 26 Torr of HF and about 90 Torr of CO at room temperature). The observed hot bands are assigned with the help of the fitted spectra for a slightly non-rigid linear molecule. The fitting for the model linear molecule with the experimental data produced the following parameters for the excited states v1, v1 + v51 and v1 + v3: v1 = 3844.030345 cm–1 with B(v1}) = 0.104181 cm–1 and D(v1) = 3.447151 × 10–7 cm–1; v1 + v51 = 3931.406563 cm–1 with B(v1 + v51) = 0.105090 cm–1 and D(v1 + v51) = 3.31263 × 10–17 cm–1; v1 + v3 = 3960.722190 cm–1 with B(v1 + v3) = 0.102764 cm–1 and D(v1 + v3) = 3.059578 × 10–7 cm–1, respectively.

References

A.C. Legon, P.D. Soper, and W.H. Flygare, J. Chem. Phys. 74, 4944 (1981).

https://doi.org/10.1063/1.441747

G.T. Fraser and A.S. Pine, J. Chem. Phys. 88, 4147 (1988).

https://doi.org/10.1063/1.453821

J. Han, A.L. McIntosh, C.L. Hartz, and J.W. Bevan, Chem. Phys. Lett. 264, 411 (1997).

https://doi.org/10.1016/S0009-2614(96)01333-4

Z. Wang and J.W. Bevan, J. Chem. Phys. 91, 3335 (1989).

https://doi.org/10.1063/1.457642

K. McMillan, D. Bender, M. Eliades, D. Danzeiser, B.A. Wofford, and J.W. Bevan, Chem. Phys. Lett. 152, 87 (1988).

https://doi.org/10.1016/0009-2614(88)87333-0

G.A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures (Berlin, Springer, 1991).

https://doi.org/10.1007/978-3-642-85135-3

P. Hobza, in Annual Reports on the Progress of Chemistry, Section C, Phys. Chem. (Royal Soc. Chem., Cambridge, 2004), p. 3.

J.E.D. Bene and M.J.T. Jordan, Int. Rev. Phys. Chem. 18, 119 (1999).

https://doi.org/10.1080/014423599230026

G. Gilli and P. Gilli, J. Mol. Struct. 552, 1 (2000).

https://doi.org/10.1016/S0022-2860(00)00454-3

V.K. Pogorelyi, Russian Chem. Rev. 46, 316 (1977).

https://doi.org/10.1070/RC1977v046n04ABEH002134

G. Gilli and P. Gilli, The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory (Oxford Univ. Press, Oxford, 2009).

https://doi.org/10.1093/acprof:oso/9780199558964.001.0001

Y. Maréchal, The Hydrogen Bond and the Water Molecule: the Physics and Chemistry of Water, Aqueous and Bio Media (Elsevier, Amsterdam, 2007).

https://doi.org/10.1016/B978-044451957-3.50012-3

J.C. Speakman, The Hydrogen Bond and Other Intermolecular Forces (Chemical Society, London, 1975).

P. Schuster, G. Zundel, and C. Sandorfy, The Hydrogen Bond: Recent Developments in Theory and Experiments (North-Holland, Amsterdam, 1976).

A.C. Legon, Chem. Soc. Rev. 19, 197 (1990).

https://doi.org/10.1039/cs9901900197

A.C. Legon and D.J. Millen, Chem. Rev. 86, 635 (1986).

https://doi.org/10.1021/cr00073a007

A.C. Legon, M.R. Keenan, T.K. Minton, T.J. Balle, and W.H. Flygare, J. Chem. Phys. 73, 583 (1980).

https://doi.org/10.1063/1.439859

E.J. Campbell, W.G. Read, and J.A. Shea, Chem. Phys. Lett. 94, 69 (1983).

https://doi.org/10.1016/0009-2614(83)87212-1

W.G. Read and E.J. Campbell, J. Chem. Phys. 78, 6515 (1983).

https://doi.org/10.1063/1.445173

W. Klopper, M. Quack, and M.A. Suhm, J. Chem. Phys. 108, 10096 (1998).

https://doi.org/10.1063/1.476470

B. Cordero, V. Gomez, A.E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, and S. Alvarez, J. Chem. Soc. Dalton Trans.21, 2832 (2008).

https://doi.org/10.1039/b801115j

E.K. Kyro, P. Shoja-Chaghervand, K. Mcmillan, M. Eliades, D. Danzeiser, and J.W. Bevan, J. Chem. Phys. 79, 78 (1983).

https://doi.org/10.1063/1.444607

L. Oudejans and R.E. Miller, J. Chem. Phys. 113, 4581 (2000).

https://doi.org/10.1063/1.1288605

Z.H. Yu, C.C. Chuang, P. Medley, T.A. Stone, and W. Klemperer, J. Chem. Phys. 120, 6922 (2004).

https://doi.org/10.1063/1.1669387

I.L. Alberts, N.C. Handy, and E.D. Simandiras, Theor. Chim. Acta 74, 415 (1988).

https://doi.org/10.1007/BF01025842

M.A. Benzel and C.E. Dykstra, J. Chem. Phys. 77, 1602 (1982).

https://doi.org/10.1063/1.443942

M.A. Benzel and C.E. Dykstra, Chem. Phys. 80, 273 (1983).

https://doi.org/10.1016/0301-0104(83)85281-1

M.A. Benzel and C.E. Dykstra, J. Chem. Phys. 78, 4052 (1983).

https://doi.org/10.1063/1.445132

M.A. Benzel and C.E. Dykstra, J. Chem. Phys. 80, 3510 (1984).

https://doi.org/10.1063/1.447304

P. Botschwina, J. Chem. Soc. Farad. 284, 1263 (1988).

https://doi.org/10.1039/f29888401263

C. Chen, S.J. Chen, and Y.S. Hong, J. Chin. Chem. Soc.-Taip 52, 853 (2005).

https://doi.org/10.1002/jccs.200500120

S.J. Chen, C. Chen, and Y.S. Hong, J. Chin. Chem. Soc.-Taip 53, 783 (2006).

https://doi.org/10.1002/jccs.200600104

B. Civalleri, E. Garrone, and P. Ugliengo, J. Mol. Str. THEOCHEM 419, 227 (1997).

https://doi.org/10.1016/S0166-1280(97)00249-2

L.A. Curtiss, D.J. Pochatko, A.E. Reed, and F. Weinhold, J. Chem. Phys. 82, 2679 (1985).

https://doi.org/10.1063/1.448265

A. Hinchliffe, Adv. Mol. Relax. Int. Pr. 21, 151 (1981).

C.A. Parish, J.D. Augspurger, and C.E. Dykstra, J. Phys. Chem. 96, 2069 (1992).

https://doi.org/10.1021/j100184a011

A.E. Reed, F. Weinhold, L.A. Curtiss, and D.J. Pochatko, J. Chem. Phys. 84, 5687 (1986).

M.A. Spackman, J. Chem. Phys. 85, 6587 (1986).

https://doi.org/10.1063/1.451441

C. Tuma, A.D. Boese, and N.C. Handy, Phys. Chem. Chem. Phys. 1, 3939 (1999).

https://doi.org/10.1039/a904357h

L.A. Rivera-Rivera, Z. Wang, B.A. McElmurry, R.R. Lucchese, J.W. Bevan, and G. Kanschat, Chem. Phys., submitted (2011).

L.A. Rivera-Rivera, R.R. Lucchese, and J.W. Bevan, Chem. Phys. Lett. 460, 352 (2008).

https://doi.org/10.1016/j.cplett.2008.05.083

L.A. Rivera-Rivera, R.R. Lucchese, and J.W. Bevan, Phys. Chem. Chem. Phys., 12, 7258 (2010).

https://doi.org/10.1039/c000972e

T.S. Ho and H. Rabitz, J. Chem. Phys. 104, 2584 (1996).

https://doi.org/10.1063/1.470984

L. Andrews, R.T. Arlinghaus, and G.L. Johnson, J. Chem. Phys. 78, 6347 (1983).

https://doi.org/10.1063/1.444693

K.W. Jucks and R.E. Miller, J. Chem. Phys. 86, 6637 (1987). https://doi.org/10.1063/1.452410

http://pgopher.chm.bris.ac.uk (2010).

D.R. Miller, in Atomic and Molecular Beam Methods, edited by Giacinto Scoles (Oxford Univ. Press, New York, 1988), p. 38.

K.D. Möller and W.G. Rothschild, in Far-Infrared Spectroscopy (Wiley-Interscience, New York, 1971), p. 325.

P.R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy (NRC Research Press, Ottawa, 1998).

N.M. Laurendeau, Statistical Thermodynamics - Fundamentals and Applications (Cambridge Univ. Press, Cambridge, 2005). https://doi.org/10.1017/CBO9780511815928

Downloads

Published

2012-05-30

How to Cite

Sizhuk, A. (2012). Fourier Transform Infrared Broadband Spectroscopy of the Gas Phase of HF and CO Mixtures. Ukrainian Journal of Physics, 57(5), 505. https://doi.org/10.15407/ujpe57.5.505

Issue

Section

Atoms and molecules