The Quantum Entropy as an Ultimate Visiting Card of the de Broglie–Bohm Theory


  • D. Fiscaletti SpaceLife Institute





The de Broglie–Bohm theory is an interesting approach to quantum mechanics, which has the merit to describe atomic and subatomic processes without ascribing a special role to the observer and remaining faithful to the principle of causality and the motion dogma. In this article, a new suggestive interpretation of the de Broglie–Bohm theory is proposed. It is based on the idea that the quantum entropy is its ultimate visiting card in the quantum domain, in a relativistic curved space-time, and in the quantum gravity domain.


J. Von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, 1955).

C.F. von Weizsäcker, in The Physicist's Conception of Nature, edited by J. Mehra (Reidel, Boston, 1973).

E. Schrödinger, Naturwiss. 23, 48, 807, 823, 844 (1935).

S. Bergia, in Quanti Copenaghen? Bohr, Heisenberg e le Interpretazioni della Meccanica Quantistica, edited by I. Tassani (Ponte Vecchio, Cesena, 2004), p. 179.

D. Fiscaletti, I Fondamenti della Meccanica Quantistica. Un'Analisi Critica dell'Interpretazione Ortodossa, della Teoria di Bohm e della Teoria GRW (CLEUP, Padova, 2003).

D. Fiscaletti, I Gatti di Schrödinger. Meccanica Quantistica e Visione del Mondo (Muzzio Editore, Roma, 2007).

P.R. Holland, The Quantum Theory of Motion (Cambridge Univ. Press, Cambridge, 1993).

D. Fiscaletti, Quant. Biosyst. 2, 93 (2007);

L. de Broglie, J. de Phys. et Radium 8, 225 (1927).

L. de Broglie, in Solvay Congress (1927), Electrons and photons: rapports et discussions du Cinquime Conseil de Physique tenu Bruxelles du 24 au Octobre 1927 sous les auspices de l'Istitut International de Physique Solvay (Gauthier-Villars, Paris, 1928).

D. Bohm, Phys. Rev. 85, 166 (1952).

R.E. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (Springer, New York, 2005).

S. Goldstein, R. Tumulka, and N. Zanghí, arXiv:0912.2666v1 [quant-ph] (2009).

D. Bohm and B.J. Hiley, The Undivided Universe: an Ontological Interpretation of Quantum Theory (Routledge, London, 1993).

D. Fiscaletti, Ukr. J. Phys. 57, 560 (2012).

D. Bohm, in Symposium on the Foundation of Modern Physics - 1987, edited by P. Lahti and P. Mittelstaedt (World Scientific, Singapore, 1988).

M. Abolhasani and M. Golshani, Ann. de la Fondat. L. de Broglie 28, 1 (2003).

V.I. Sbitnev, Kvant. Magiya 5, 1101 (2008); URL p1101.html.

L. Brillouin, Science and Information Theory (Dover, New York, 2004).

E.R. Bittner, (2000).

B. Poirier, (2008).

P.V. Poluyan, Kvant. Magiya, 2, 3119 (2005);

V.I. Sbitnev, Int. J. of Bifurc. and Chaos 19, 2335 (2009)

arXiv:0808.1245v1 [quant-ph] (2008).

C. Grosche, Path Integrals, Hyperbolic Spaces, and Selberg Trace Formulae (World Scientific, Singapore, 1996).

A. Shojai and F. Shojai, Phys. Scr. 64, 413 (2001).

F. Shojai and A. Shojai, arXiv:gr-qc/0404102 v1 (2004).

L. de-Broglie, Non-Linear Wave Mechanics, (Elsevier, Amsterdam, 1960).

T. Horiguchi, Mod. Phys. Lett. A 9, 1429 (1994).

A. Blaut and J.K. Glikman, Class. Quant. Grav. 13, 39 (1996).

S.P. Kim, Phys. Lett. A 236, 11 (1997).

S.P. Kim, Phys. Rev. D 55, 7511 (1997).

Bohmiam Mechanics and Quantum Theory: An Appraisal, edited by J.T. Cushing, A. Fine, and S. Goldstein (Kluwer, Boston, 1996).

J.A. de Barros, N. Pinto-Neto, and M.A. Sagioro-Leal, Phys. Lett. A 241, 229 (1998).

F. Shojai and M. Golshani, Int. J. Mod. Phys. A. 13, 677 (1998).

R. Colistete, J.C. Fabris, and N. Pinto-Neto, Phys. Rev. D 57, 4707 (1998).

P. Pinto-Neto and R. Colistete, Phys. Lett. A 290, 219 (2001).

J. Marto and P.V. Moniz, Phys. Rev. D 65, 023516 (2001).

Kenmoku, R. Sato, and S. Uchida, Class. Quantum Grav. 19, 799 (2002).

F. Shojai, A. Shojai, and M. Golshani, Mod. Phys. Lett. A 13, 2725 (1998).

F. Shojai, A. Shojai, and M. Golshani, Mod. Phys. Lett. A., 13, 2915 (1998).

A. Shojai, F. Shojai, and M. Golshani, Mod. Phys. Lett. A 13, 2965 (1998).

F. Shojai and A. Shojai, Int. J. Mod. Phys. A 15, 1859 (2000).

A. Shojai, Int. J. Mod. Phys. A 15, 1757 (2000); arXiv:gr-qc/0010013.

F. Shojai and A. Shojai, arXiv: gr-qc/0306099 (2003).

Y.M. Cho and D.H. Park, Nuovo Cim. B 105, 817 (1990).

J. Kowalski-Glikman, arXiv:gr-qc/9511014 v1 (1995).

F. Shojai and A. Shojai, J. High En. Phys. 5, 037 (2001).

A. Shojai, F. Shojai, v1 (2003).

A. Shojai and F. Shojai, Phys. Scr. 68, 207 (2003).




How to Cite

Fiscaletti, D. (2012). The Quantum Entropy as an Ultimate Visiting Card of the de Broglie–Bohm Theory. Ukrainian Journal of Physics, 57(9), 946.



General problems of theoretical physics