A Three-Dimensional Non-Local Quantum Vacuum as the Origin of Photons


  • D. Fiscaletti SpaceLife Institute
  • A. Sorli Foundations of Physics Institute




black body radiation, CMB, photon, quantum vacuum, fluctuations of the quantum vacuum energy density, reduction-state processes of creation/annihilation of quanta


A model of a three-dimensional quantum vacuum defined by the processes of creation/annihilation of quanta corresponding to elementary energy density fluctuations is proposed. In it, a photon is not a primary physical reality but emerges itself as a special state of the three-dimensional quantum vacuum. In this model, the three-dimensional quantum vacuum has a ground state which acts as a “cosmic reservoir” of photons, which emits and absorbs photons and Planck’s law of the spectral distribution of the energy radiated by a black body derives from the fundamental processes in the three-dimensional quantum vacuum, in particular, in the context of a quantization volume responsible for the appearance of photons. Finally, the idea of the Lamb shift of hydrogenoid atoms as a phenomenon determined by the ground state of the quantum vacuum which acts as a reservoir of photons is explored.


A. Sorli, U. Dobnikar, S.K. Patro, M. Mageshwaran, D. Fiscaletti. Euclidean-Planck Metrics of Space, Particle Physics and Cosmology. NeuroQuantology 16, 18 (2018). https://doi.org/10.14704/nq.2018.16.4.1221

Stanford Solar Center, http://solar-center.stanford.edu/comics/ref/em-sunspectrum.pdf (2017).

J. Wheeler, R. Feynman. Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157 (1945). https://doi.org/10.1103/RevModPhys.17.157

J.G. Cramer. Generalized absorber theory and the Einstein-Podolsky-Rosen paradox. Physical Review D 22, 362 (1980). https://doi.org/10.1103/PhysRevD.22.362

J.G. Cramer. The arrow of electromagnetic time and the generalized absorber theory. Foundations of Physics 13, 887 (1983). https://doi.org/10.1007/BF00732064

J.G. Cramer. The transactional interpretation of quantum mechanics. Rev. Mod. Phys. 58, 647 (1986). https://doi.org/10.1103/RevModPhys.58.647

J.G. Cramer. An overview of the transactional interpretation. Int. J. Theor. Phys. 27, 27 (1988). https://doi.org/10.1007/BF00670751

R.E. Kastner. De Broglie waves as the "bridge of becoming" between quantum theory and relativity. Foundations of Science 18, 1 (2013). https://doi.org/10.1007/s10699-011-9273-4

R.E. Kastner. On delayed choice and contingent absorber experiments. ISRN Mathematical Physics 2012, Article ID 617291 (2012). https://doi.org/10.5402/2012/617291

R.E. Kastner. The broken symmetry of time. AIP Conference Proceedings 1408, 7 (2011). https://doi.org/10.1063/1.3663714

R.E. Kastner. The New Transactional Interpretation of Quantum Theory: The Reality of Possibility (Cambridge Univ. Press, 2012). https://doi.org/10.1017/CBO9780511675768

L. Chiatti. The transaction as a quantum concept. In: Space-Time Geometry and Quantum Events, edited by I. Licata (Nova Sci., 2014), pp. 11-44 e-print https://arXiv.org/pdf/1204.6636 (2012).

I. Licata. Transaction and non-locality in quantum field theory. European Physical Journal Web of Conferences (2013). https://doi.org/10.1051/epjconf/20147000039

I. Licata, L. Chiatti. The archaic universe: big bang, cosmological term and the quantum origin of time in projective cosmology. Int. J. Theor. Phys. 48, 1003 (2009). https://doi.org/10.1007/s10773-008-9874-z

I. Licata, L. Chiatti. Archaic universe and cosmological model: 'big-bang' as nucleation by vacuum. Int. J. Theor. Phys. 49, 2379 (2010). https://doi.org/10.1007/s10773-010-0424-0

I. Licata, L. Chiatti. Timeless approach to quantum jumps. Quanta 4, 10 (2015). https://doi.org/10.12743/quanta.v4i1.31

L. Chiatti, I. Licata. Particle model from quantum foundations. Quantum Studies: Mathematics and Foundations 4, 191 (2017). https://doi.org/10.1007/s40509-016-0094-6

D. Fiscaletti, A. Sorli. Perspectives about quantum mechanics in a model of a three-dimensional quantum vacuum where time is a mathematical dimension. SOP Transactions on Theoretical Physics 1, 11 (2014). https://doi.org/10.15764/TPHY.2014.03002

D. Fiscaletti, A. Sorli. Space-time curvature of general relativity and energy density of a three-dimensional quantum vacuum. Annales UMCS Section AAA: Physica LXIX, 55 (2014). https://doi.org/10.1515/physica-2015-0004

D. Fiscaletti. The Timeless Approach. Frontier Perspectives in 21st Century Physics (World Scientific, 2015). https://doi.org/10.1142/9731

D. Fiscaletti, A. Sorli. About a three-dimensional quantum vacuum as the ultimate origin of gravity, electromagnetic field, dark energy ... and quantum behavior. Ukr. J. Phys. 61, 13 (2016). https://doi.org/10.15407/ujpe61.05.0413

D. Fiscaletti, A. Sorli. Dynamic quantum vacuum and relativity. Annales UMCS Section AAA: Physica LXXI, 11 (2016). https://doi.org/10.17951/aaa.2016.71.11

D. Fiscaletti, What is the actual behavior of the electron? From Bohm's approach to the transactional interpretation. . . to a three-dimensional timeless non-local quantum vacuum. Electronic J. Theor. Phys. 13, 1 (2016).

D. Fiscaletti, A. Sorli. Quantum vacuum energy density and unifying perspectives between gravity and quantum behavior of matter. Annales de la Fondation Louis de Broglie 42, 251 (2017).

D. Fiscaletti, A. Sorli. Quantum relativity: variable energy density of quantum vacuum as the origin of mass, gravity and the quantum behavior. Ukr. J. Phys. 63, 623 (2018). https://doi.org/10.15407/ujpe63.7.623

D. Fiscaletti, A. Sorli. Bijective epistemology and space-time. Foundations of Science 20, 387 (2015). https://doi.org/10.1007/s10699-014-9381-z

D. Fiscaletti, A. Sorli. Searching for an adequate relation between time and entanglement. Quantum Studies: Mathematics and Foundations 4, 357 (2017). https://doi.org/10.1007/s40509-017-0110-5

C. Meis. Vector potential quantization and the quantum vacuum. Physics Research International 2014, Article ID 187432 (2014). https://doi.org/10.1155/2014/187432

C. Meis. The nature of the photon and the quantum vacuum http://www.mse-chair.org/wp-content/uploads/2017/03/Photons-Vacuum_by-C.MEIS_.pdf (2018).

B.H. Bransden, C.J. Joachain. Physics of Atoms and Molecules (Longman, 1983).

H. Haken. Light (North Holland, 1981).

M. Weissbluth. Photon-Atom Interactions (Academic Press, 1988).

See, for example: R. Eisberg, R. Resnick. Quantum Physics of Atoms, Molecules, Solids Nuclei, and Particles (Wiley, 1985).

K.S. Krane. Modern Physics (Wiley, 1996).

J.R. Taylor, C.D. Zafiratos, M.A. Dubson. Modern Physics for Scientists and Engineers (Pearson, 2003).

S.T. Thornton, A. Rex. Modern Physics for Scientists and Engineers (Brooks/Cole, 2013).

O. Lummer, E. Pringsheim. Die Vertheilung der Energie im Spectrum des schwarzen K¨opers und des blanken Platins. Verhandlungen der Deutschen Phyikalischen Gesellschaft 1, 215 (1899).

W. D¨oring. Atomphysik und Quantenmechanik: I. Grundlagen (Walter de Gruyter, 1973).

L.D. Landau, E.M. Lifshitz. Course of Theoretical Physics. Vol. 5: Statistical Physics (Pergamon Press, 1980)

M. Planck. Ueber das Gesetz der Energieverteilung im Normalspectrum. Ann. d. Physik 4, 553 (1901). https://doi.org/10.1002/andp.19013090310

W. Pauli. Statistical Mechanics (MIT Press, 1973).

T.H. Boyer. Derivation of the Planck blackbody spectrum from thermodynamic ideas in classical physics with classical zero-point radiation. arXiv:1802.04653v1 [physics.gen-ph] (2018).

D. Fiscaletti, A. Sorli. About the hydrogenoid atoms in the timeless three-dimensional quantum vacuum. Quantum Studies: Mathematics and Foundations, accepted for publication, 2019. https://doi.org/10.1007/s40509-019-00184-8

T.A.Welton. Some Observable Effects of the Quantum Mechanical Fluctuations of the Electromagnetic Field. Phys. Rev. 74, 1157 (1948). https://doi.org/10.1103/PhysRev.74.1157

V.F. Weisskopf. Recent developments in the theory of the electron. Rev. Mod. Phys. 21, 305 (1949). https://doi.org/10.1103/RevModPhys.21.305




How to Cite

Fiscaletti, D., & Sorli, A. (2020). A Three-Dimensional Non-Local Quantum Vacuum as the Origin of Photons. Ukrainian Journal of Physics, 65(2), 106. https://doi.org/10.15407/ujpe65.2.106



General physics