The Geometrodynamic Nature of the Quantum Potential


  • D. Fiscaletti SpaceLife Institute





The de Broglie–Bohm theory allows us to have got a satisfactory geometrodynamic interpretation of quantum mechanics. The fundamental element, which creates a geometrodynamic picture of the quantum world in the non-relativistic domain, a relativistic curved space-time background, and the quantum gravity domain, is the quantum potential. It is shown that, in the non-relativistic domain, the geometrodynamic nature of the quantum potential follows
from the fact that it is an information potential containing a space-like active information on the environment; the geometric properties of the space expressed by the quantum potential determine non-local correlations between subatomic particles. Moreover, in the de Broglie–Bohm theory in a curved space-time, it is shown that the quantum, as well as the gravitational, effects of matter have geometric nature and are highly related: the quantum potential can be interpreted as the conformal degree of freedom of the space-time metric, and its presence is equivalent to the curved space-time. It is shown on the basis of some recent research that, in quantum gravity, we have a generalized geometric unification of gravitational and quantum effects of matter; Bohm's interpretation shows that the form of a quantum potential and its relation to the conformal degree of freedom of the space-time metric can be derived from the equations of motion.


J.T. Wheeler, Phys. Rev. D 41, 431 (1990).

W.R. Wood and G. Papini, in The Present Status of Quantum Theory of Light, Proceedings of a Symposium in Honour of Jean-Pierre Vigier, edited by S. Jeffers, S. Roy, J.-P. Vigier, G. Hunter (Springer, Berlin, 1996), p. 247.

B.G. Sidharth, Geometry and Quantum Mechanics, e-print arXiv:physics/0211012 (2002).

D. Bohm, Phys. Rev. 85, 166 (1952).

D. Bohm, Phys. Rev. 85, 180 (1952).

P.R. Holland, The Quantum Theory of Motion (Cambridge Univ. Press, Cambridge, 1993).

D. Fiscaletti, I Fondamenti della Meccanica Quantistica. Un'analisi Critica dell'Interpretazione Ortodossa, della Teoria di Bohm e della Teoria GRW (CLEUP, Padova, 2003).

D. Fiscaletti, I Gatti di Schrödinger. Meccanica Quantistica e Visione del Mondo (Muzzio Editore, Roma, 2007).

D. Fiscaletti, Quantum Biosystems 2, 93 (2007); {

L. de Broglie, in Solvay Congress (1927), Electrons and photons: rapports et discussions du Cinquime Conseil de Physique tenu Bruxelles du 24 au Octobre 1927 sous les auspices de l'Istitut International de Physique Solvay (Gauthier-Villars, Paris, 1928).

D. Bohm, Phys. Rev. 89, 458 (1953).

E.R. Bittner and R.E. Wyatt, J. Chem. Phys. 113, 8898 (2000).

B.K. Kendrick, J. Chem. Phys. 119, 5805 (2003).

R.E. Wyatt, CNLS Workshop: Quantum and Semiclassical Molecular Dynamics of Nanostructures (2004).

S. Garashchuk and V.A. Rassolov, J. Chem. Phys. 121, 8711 (2004).

B.J. Hiley, in Proc. Conf. Theory: Reconsiderations of Foundations (Växjö Univ. Press, Växjö, Sweden, 2002), p. 141.

D. Bohm, in Symposium on the foundation of modern physics - 1987, edited by P. Lahti and P. Mittelstaedt (World Scientific, Singapore, 1988).

J.S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ. Press, Cambridge, 1987).

D. Bohm and B.J. Hiley, The Undivided Universe: an Ontological Interpretation of Quantum Theory (Routledge, London, 1993).

G. Chew, Sci. Progr. 51, 529 (1960).

B.J. Hiley, in Proc. CASYS'2000, Liege, Belgium, Aug. 7 (2000).

B.J. Hiley and M. Fernandes, in Time, Temporality, Now, edited by H. Atmanspacher and E. Ruhnau (Springer, Berlin, 1997), p. 365.

B.J. Hiley and N. Monk, Mod. Phys. Lett. A 8, 3225 (1993; Frontier Persp. 14, 2 (2005/2006).

D. Fiscaletti, Electronic J. of Theor. Phys. 2, 6 (2005),

A. Shojai and F. Shojai, Phys. Scr. 64, 413 (2001).

F. Shojai and A. Shojai, Understanding Quantum Theory in terms of Geometry, e-print arXiv:gr-qc/0404102 v1 (2004).

L. de Broglie, Non-Linear Wave Mechanics (Elsevier, Amsterdam, 1960).

T. Horiguchi, Mod. Phys. Lett. A 9, 1429 (1994).

A. Blaut and J.K. Glikman, Class. Quant. Grav. 13, 39 (1996).

S.P. Kim, Phys. Lett. A 236, 11 (1997).

S.P. Kim, Phys. Rev. D 55, 7511 (1997).

Bohmiam mechanics and quantum theory: An Appraisal, edited by J.T. Cushing, A. Fine, and S. Goldstein (Kluwer, Boston, 1996).

J.A. de Barros, N. Pinto-Neto, and M.A. Sagioro-Leal, Phys. Lett. A 241, 229 (1998).

F. Shojai and M. Golshani, Int. J. Mod. Phys. A. 13, 4, 677 (1998).

R. Colistete (jr.), J.C. Fabris, and N. Pinto-Neto, Phys. Rev. D 57, 4707 (1998).

P. Pinto-Neto and R. Colistete, Phys. Lett. A. 290, 219 (2001).

J. Marto and P.V. Moniz, Phys. Rev. D 65, 023516 (2001).

M. Kenmoku, R. Sato, and S. Uchida, Class. Quantum Grav. 19, 799 (2002).

F. Shojai, A. Shojai, and M. Golshani, Mod. Phys. Lett. A 13, 2725 (1998).

F. Shojai, A. Shojai, and M. Golshani, Mod. Phys. Lett. A., 13, 2915 (1998).

A. Shojai, F. Shojai, and M. Golshani, Mod. Phys. Lett. A 13, 2965 (1998).

F. Shojai and A. Shojai, Int. J. Mod. Phys. A 15, 1859 (2000).

A. Shojai, Int. J. Mod. Phys. A 15, 1757 (2000), e-print arXiv:gr-qc/0010013.

F. Shojai and A. Shojai, Weyl Geometry and Quantum Gravity, e-print arXiv: gr-qc/0306099 (2003).

Y.M. Cho and D.H. Park, Nuovo Cimento B 105, 817 (1990).




How to Cite

Fiscaletti, D. (2012). The Geometrodynamic Nature of the Quantum Potential. Ukrainian Journal of Physics, 57(5), 560.



General problems of theoretical physics