Коливальні спектри та комп’ютерне моделювання амілацетату: MEP, AIM, RDG, NCI, ELF та LOL методи аналізу

Автор(и)

  • A. Jumabaev Sharof Rashidov Samarkand State University
  • H. Hushvaktov Sharof Rashidov Samarkand State University
  • A. Absanov Sharof Rashidov Samarkand State University
  • B. Khudaykulov Sharof Rashidov Samarkand State University
  • Z. Ernazarov Sharof Rashidov Samarkand State University
  • L. Bulavin Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe69.10.742

Ключові слова:

раманiвська спектроскопiя, квантово-хiмiчнi розрахунки, теорiя функцiонала густини, водневий зв’язок, молекулярний електростатичний потенцiал, функцiя локалiзацiї електронiв, локалiзований орбiтальний локатор, RDG дiаграма, розподiл заряду за Маллiкеном, амiлацетат, етанол, гептан

Анотація

Робота присвячена дослiдженню бiологiчно активного чистого амiлацетату та його розчинiв в етанолi та гептанi. Згiдно з результатами експерименту, при зниженнi концентрацiї амiлацетату в спектрi розчину амiлацетату в етанолi з’являється додаткова смуга з боку низьких частот. Основною причиною утворення такої додаткової смуги є мiжмолекулярний водневий зв’язок мiж амiлацетатом i етанолом. У розчинi амiлацетату в гептанi спектральна смуга, що вiдповiдає валентним C=O коливанням, змiщується в бiк вищих частот iз зменшенням концентрацiї амiлацетату в розчинi. Це пояснюється тим, що гептан порушує мiжмолекулярнi взаємодiї в розчинi, що приводить до бiльш простої спектральної смуги, яка вiдповiдає валентному коливанню C=O. Розрахунками також дослiджено взаємодiї в комплексах амiлацетат-етанолу та їх спектральнi прояви. Виявилося, що енергiя утворення комплексу зростає зi збiльшенням числа молекул, але середня енергiя водневого зв’язку, яка припадає на один зв’язок, залишається незмiнною. Метод теорiї функцiонала густини (density functional theory, DFT) був використаний для аналiзу низки структурних параметрiв: розподiлу зарядiв атомiв за Маллiкеном, термодинамiчних параметрiв, поверхнi молекулярного електростатичного потенцiалу (molecular electrostatic potential, MEP) та розподiлу атомiв у молекулах (atoms in molecules, AIM). Було також проведено аналiз деяких квантово-хiмiчних параметрiв, як-от: аналiз редукованого градiєнта густини (reduced density gradient, RDG) i нековалентної взаємодiї (noncovalent interaction, NCI), аналiз функцiй локалiзацiї електронiв (electron localization functions, ELF) та аналiз локалiзованого орбiтального локатора (localized orbital locator, LOL).

Посилання

H. Hushvaktov, A. Jumabaev, I. Doroshenko, A. Absanov. Raman spectra and non-empirical calculations of dimethylformamide molecular clusters structure. Vib. Spectrosc. 117, 103315 (2021).

https://doi.org/10.1016/j.vibspec.2021.103315

A. Jumabaev, U. Holikulov, H. Hushvaktov, A. Absanov, L. Bulavin. Interaction of valine with water molecules: Raman and DFT study. Ukr. J. Phys. 67, 602 (2022).

https://doi.org/10.15407/ujpe67.8.602

H.A. Hushvaktov, F.H. Tukhvatullin, A. Jumabaev, U.N. Tashkenbaev, A.A. Absanov, B.G. Hudoyberdiev, B. Kuyliev. Raman spectra and ab initio calculation of a structure of aqueous solutions of methanol. J. Mol. Struct. 1131, 25 (2017).

https://doi.org/10.1016/j.molstruc.2016.10.061

F.H. Tukhvatullin, U.N. Tashkenbaev, A. Jumabaev, H. Hushvaktov, A. Absanov, G. Sharifov. Calculations and experimental studies of the aggregation of molecules of liquid acetone by spectra of Raman scattering. J. Nonlin. Opt. Phys. Mater. 22, 1350022 (2013).

https://doi.org/10.1142/S0218863513500227

F.H. Tukhvatullin, V.E. Pogorelov, A. Jumabaev, H.A. Hushvaktov, A.A. Absanov, A. Shaymanov. Aggregation of molecules in liquid methyl alcohol and its solutions: Raman spectra and ab initio calculations. J. Mol. Struct. 881, 52 (2008).

https://doi.org/10.1016/j.molstruc.2007.08.036

S. Otajonov, S. Allaquliyeva, B. Eshchanov, N. Abdullayev, H. Eshkuvatov. Manifestation of the laws of vibrational motion of molecules of the condensed medium under the influence of laser radiation in the Raman spectrum. Results in Optics 13, 100550 (2023).

https://doi.org/10.1016/j.rio.2023.100550

S. Otajonov, B.X. Eshchanov, A.S. Isamatov. On possible models of thermal motion of molecules and temperature effect on relaxation of optical anisotropy in bromine benzene. Ukr. J. Phys. 56, 1178 (2011).

https://doi.org/10.15407/ujpe56.11.1178

B.A. Marekha, K. Sonoda, T. Uchida, T. Tokuda, A. Idrissi, T. Takamuku. ATR-IR spectroscopic observation on intermolecular interactions in mixtures of imidazoliumbased ionic liquids CnmimTFSA (n = 2-12) with DMSO. J. Mol. Liq. 232, 431 (2017).

https://doi.org/10.1016/j.molliq.2017.02.068

A. Jumabaev, H. Hushvaktov, B. Khudaykulov, A. Absanov, M. Onuk, I. Doroshenko, L. Bulavin. Formation of hydrogen bonds and vibrational processes in dimethyl sulfoxide and its aqueous solutions: Raman spectroscopy and Ab initio calculations. Ukr. J. Phys. 68, 375 (2023).

https://doi.org/10.15407/ujpe68.6.375

G.A. Jeffrey. An Introduction To Hydrogen Bonding (Oxford university press, 1997) [ISBN: 978-0195095494].

L. Pauling. The Nature of the Chemical Bond (Cornell University Press, 1960) [ISBN: 978-0801403330].

J. Chocholouˇsov'a, V. ˇSpirko, P. Hobza. First local minimum of the formic acid dimer exhibits simultaneously redshifted O-H· · · O and improper blue-shifted C-H· · · O hydrogen bonds. Phys. Chem. Chem. Phys. 6, 37 (2004).

https://doi.org/10.1039/B314148A

O. Mishchuk, I. Doroshenko, V. Sablinskas, V. Balevicius. Temperature evolution of cluster structure in n-hexanol, isolated in Ar and N2 matrices and in condensed states. Struct. Chem. 27, 243 (2016).

https://doi.org/10.1007/s11224-015-0692-7

Y. Tatamitani, B. Liu, J. Shimada, T. Ogata, P. Ottaviani, A. Maris, J.L. Alonso. Weak, improper, C-O...H-C hydrogen bonds in the dimethyl ether dimer. J. Am. Chem. Soc. 124, 2739 (2002).

https://doi.org/10.1021/ja0164069

V. Balevicius, V. Sablinskas, I. Doroshenko, V. Pogorelov. Propanol clustering in argon matrix: 2D FTIR correlation spectroscopy. Ukr. J. Phys. 56, 855 (2011).

https://doi.org/10.15407/ujpe56.8.855

H. Gasparetto, A.L.B. Nunes, F. de Castilhos, N.P.G. Salau. Soybean oil extraction using ethyl acetate and 1-butanol: From solvent selection to thermodynamic assessment. J. Ind. Eng. Chem. 113, 450 (2022).

https://doi.org/10.1016/j.jiec.2022.06.020

A. Oleinikova, L. Bulavin, V. Pipich. Critical anomaly of shear viscosity in a mixture with an ionic impurity. Chem. Phys. Lett. 278, 121 (1997).

https://doi.org/10.1016/S0009-2614(97)00945-7

B.T.F. de Mello, I.J. Iwassa, R.P. Cuco, V.A. dos Santos Garcia, C. da Silva. Methyl acetate as solvent in pressurized liquid extraction of crambe seed oil. J. Supercrit. Fluid. 145, 66 (2019).

https://doi.org/10.1016/j.supflu.2018.11.024

L. Zhang, Y. Yang, Y. Li, J. Wu, S. Wu, X. Tan, Q. Hu. Highly efficient UV-visible-infrared photothermocatalytic removal of ethyl acetate over a nanocomposite of CeO2 and Ce-doped manganese oxide. Chin. J. Catal. 43, 379 (2022).

https://doi.org/10.1016/S1872-2067(21)63816-0

V.F. Korolovych, O.A. Grishina, O.A. Inozemtseva, A.V. Selifonov, D.N. Bratashov, S.G. Suchkov, L.A. Bulavin, O.E. Glukhova, G.B. Sukhorukov, D.A. Gorin. Impact of high-frequency ultrasound on nanocomposite microcapsules: In silico and in situ visualization. Phys. Chem. Chem. Phys. 18, 2389 (2016).

https://doi.org/10.1039/C5CP05465F

A. Mahendraprabu, T. Sangeetha, P.P. Kannan, N.K. Karthick, A.C. Kumbharkhane, G. Arivazhagan. Hydrogen bond interactions of ethyl acetate with methyl Cellosolve: FTIR spectroscopic and dielectric relaxation studies. J. Mol. Liq. 301, 112490 (2020).

https://doi.org/10.1016/j.molliq.2020.112490

Y. Zhou, Z. Wang, S. Gong, Z. Yu, X. Xu. Comparative study of hydrogen bonding interactions between N-methylacetamide and methyl acetate/ethyl formate. J. Mol. Struct. 1173, 321 (2018).

https://doi.org/10.1016/j.molstruc.2018.07.012

H. Hushvaktov, B. Khudaykulov, A. Jumabaev, I. Doroshenko, A. Absanov, G. Murodov. Study of formamide molecular clusters by Raman spectroscopy and quantum-chemical calculations. Mol. Cryst. Liq. Cryst. 749, 124 (2022).

https://doi.org/10.1080/15421406.2022.2068478

R.M. Silverstein, F.X. Webster, D.J. Kiemle. Spectrometric Identification of Organic Compounds (Wiley, 1963) [ISBN: 978-0471791751].

O.W. Kolling. FTIR study of the solvent influence on the carbonyl absorption peak of ethyl acetate. J. Phys. Chem. 96, 6217 (1992).

https://doi.org/10.1021/j100194a025

R. Sahana, P. Mounica, K. Ramya, G. Arivazhagan. Multimers of 1-propanol and their heteromolecular hydrogen bonds with ethyl acetate: Fourier transform infrared spectral studies. J. Solut. Chem. 52, 1396 (2023).

https://doi.org/10.1007/s10953-023-01325-9

M.J. Frisch et al. Gaussian 09, Rev - D.1 (Gaussian Inc, Wallingford, 2009).

A.D. Becke. Density-funcitonal thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).

https://doi.org/10.1063/1.464913

C. Lee, W. Yang, R.G. Parr. Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1998).

https://doi.org/10.1103/PhysRevB.37.785

Origin Pro 8.5. OriginLab Coroporation, Northampton.

W. Humphrey, A. Dalke, K. Schulten. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33 (1996).

https://doi.org/10.1016/0263-7855(96)00018-5

T. Lu, F. Chen. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012).

https://doi.org/10.1002/jcc.22885

R.C. Dorca. Quantum mechanical basis for mulliken population analysis. J. Math. Chem. 36, 231 (2004).

https://doi.org/10.1023/B:JOMC.0000044221.23647.20

R. Bochicchio, R. Ponec, L. Lain, A. Torre. Pair population analysis within AIM theory. J. Phys. Chem. A. 104, 9130 (2000).

https://doi.org/10.1021/jp001062e

B.A. Shainyan, N.N. Chipanina, T.N. Aksamentova, L.P. Oznobikhina, G.N. Rosentsveig, I.B. Rosentsveig. Intramolecular hydrogen bonds in the sulfonamide derivatives of oxamide, dithiooxamide, and biuret. FT-IR and DFT study, AIM and NBO analysis. Tetrahedron 66, 8551 (2010).

https://doi.org/10.1016/j.tet.2010.08.076

W. Humphrey, A. Dalke, K. Schulten. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33 (1996).

https://doi.org/10.1016/0263-7855(96)00018-5

Th. Gomti Devi, Bhargab Borah. Non-coincidence effect study of NN-Dibutyl formamide in binary liquid mixtures. J. Mol. Liq. 309, 113174 (2020).

https://doi.org/10.1016/j.molliq.2020.113174

Kh. Khushvaktov, A. Jumabaev, V. Pogorelov, U. Tashkenbaev, A. Absanov, G. Sharifov, B. Amrullaeva. Intermolecular hydrogen bond in acetic acid solutions. Raman spectra and ab initio calculations. Am. J. Phys. Appl. 6 (6), 169 (2019).

G. Pitsevich, I. Doroshenko, A. Malevich, E. Shalamberidze, V. Sapeshko, V. Pogorelov, L.G.M. Pettersson. Temperature dependence of the intensity of the vibrationrotational absorption band v2 of H2O trapped in an argon matrix. Spectrochim. Acta A. 172, 83 (2017).

https://doi.org/10.1016/j.saa.2016.04.028

R.F.W. Bader. A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893 (1991).

https://doi.org/10.1021/cr00005a013

N. Chetry, Th. Gomti Devi. Intermolecular interaction study of l-threonine in polar aprotic solvent: Experimental and theoretical study. J. Mol. Liq. 338, 116689 (2021).

https://doi.org/10.1016/j.molliq.2021.116689

Sh.S. Malaganvi, J.T. Yenagi, J. Tonannavar. Experimental, DFT dimeric modeling and AIM study of H-bondmediated composite vibrational structure of Chelidonic acid. Heliyon 5 (5), e01586 (2019).

https://doi.org/10.1016/j.heliyon.2019.e01586

I. Rozas, I. Alkorta, J. Elguero. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J. Am. Chem. Soc. 122 (45), 11154 (2000).

https://doi.org/10.1021/ja0017864

E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. ContrerasGarcia, A.J. Cohen, W. Yang. J. Am. Chem. Soc. 132, 6498 (2010).

https://doi.org/10.1021/ja100936w

J. Contreras-Garcia, E.R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D.N. Beratan, W. Yang. J. Chem. Theory Comput. 7, 625 (2011).

https://doi.org/10.1021/ct100641a

A. Demirpolat, F. Akman, A.S. Kazachenko. An experimental and theoretical study on essential oil of Aethionema sancakense: Characterization, molecular properties and RDG analysis. Molecules, 27, 6129 (2022).

https://doi.org/10.3390/molecules27186129

F. Akman, A. Demirpolat, A.S. Kazachenko, A.S. Kazachenko, N. Issaoui, O. Al-Dossary. Molecular structure, electronic properties, reactivity (ELF, LOL, and Fukui), and NCI-RDG studies of the binary mixture of water and essential oil of phlomis bruguieri. Molecules. 28, 2684 (2023).

https://doi.org/10.3390/molecules28062684

V.J. Reeda, V.B. Jothy, M. Asif, M. Nasibullah, N.S. Alharbi, G. Abbas, S. Muthu. Synthesis, solvent polarity (polar and nonpolar), structural and electronic properties with diverse solvents and biological studies of (E)-3-((3-chloro-4-fluorophenyl) imino) indolin-2-one. J. Mol. Liq. 380, 121709 (2023).

https://doi.org/10.1016/j.molliq.2023.121709

Savithiri Sambandam, Bharanidharan Sarangapani, Sugumar Paramasivam, Rajeevgandhi Chinnaiyan. Molecular structure, vibrational spectral investigations (FT-IR and FT-Raman), NLO, NBO, HOMO-LUMO, MEP analysis of (E)-2-(3-pentyl-2,6- diphenylpiperidin-4- ylidene)-N phenylhydrazinecarbothioamide based on DFT and molecular docking studies. Biointerface Res. Appl. Chem. 11, 11833 (2021).

https://doi.org/10.33263/BRIAC114.1183311855

K. Arulaabaranam, S. Muthu, G. Mani, A.S. Ben Geoffrey. Speculative assessment, molecular composition, PDOS, topology exploration (ELF, LOL, RDG), ligand-protein interactions, on 5-bromo-3 nitropyridine-2-carbonitrile. Heliyon. 7, e07061 (2021).

https://doi.org/10.1016/j.heliyon.2021.e07061

M. Lawrence, E. Isac Paulraj, P. Rajesh. Spectroscopic characterization, electronic transitions and pharmacodynamic analysis of 1-phenyl-1,3-butanedione: An effective agent for antipsychotic activity. Chem. Phys. Impact. 6, 100226 (2023).

https://doi.org/10.1016/j.chphi.2023.100226

A. Jumabaev, B. Khudaykulov, I. Doroshenko, H. Hushvaktov, A. Absanov. Raman and ab initio study of intermolecular interactions in aniline. Vib. Spectrosc. 122, 103422 (2022).

https://doi.org/10.1016/j.vibspec.2022.103422

Опубліковано

2024-10-29

Як цитувати

Jumabaev, A., Hushvaktov, H., Absanov, A., Khudaykulov, B., Ernazarov, Z., & Bulavin, L. (2024). Коливальні спектри та комп’ютерне моделювання амілацетату: MEP, AIM, RDG, NCI, ELF та LOL методи аналізу. Український фізичний журнал, 69(10), 742. https://doi.org/10.15407/ujpe69.10.742

Номер

Розділ

Фізика рідин та рідинних систем, біофізика і медична фізика

Статті цього автора (авторів), які найбільше читають

<< < 1 2