Раманівські спектри розсіювання і числові розрахунки в теорії функціоналу густини для міжмолекулярних взаємодій у трифтороцтовій кислоті та її розчинах

Автор(и)

  • A. Jumabaev Sharof Rashidov Samarkand State University
  • A. Absanov Sharof Rashidov Samarkand State University
  • H. Hushvaktov Sharof Rashidov Samarkand State University
  • L. Bulavin Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe68.4.246

Ключові слова:

раманiвськi спектри, трифтороцтова кислота, структура водневого зв’язку, розрахунки в теорiї функцiонала густини

Анотація

Вивчається механiзм створення молекулярних кластерiв у трифтороцтовiй кислотi на основi використання раманiвських спектрiв розсiювання в рiзних розчинах. Цi спектри вiдповiдають поляризованим структурам з вiбрацiйними коливаннями C=O i O–H груп трифтороцтової кислоти без домiшок i мiстять три широкi смуги бiля 1734, 1754 та 1800 см−1 з рiзними параметрами деполяризацiї. Якщо концентрацiя кислоти в ацетонiтрилi дуже мала, то зберiгається спектральна смуга бiля 1800 см−1, яка вiдповiдає ко-ливанням C=O групи. За допомогою теорiї функцiонала густини (DFT/B3LYP/6-311++G(d,p)) розглянуто механiзм створення кластерiв за участю мономера, димера та тримера кислоти з молекулами води [CF3COOH + (H2O)n, n = 1–7] або ацетонiтрилу [CF3COOH + (CH3CN)n, n = 1–2].

Посилання

N. Nishi, T. Nakabayashi, K. Kosugi. Liquid structure of acetic acid studied by Raman spectroscopy and Ab initio molecular orbital calculations. J. Phys. Chem. A 103 (50), (1999).

https://doi.org/10.1021/jp991501d

J. Rezac, P. Hobza. Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods. J. Chem. Theory Comput. 8, 141 (2012).

https://doi.org/10.1021/ct200751e

V.D. Maiorov, G.I. Voloshenko, I.S. Kislina. Composition and structure of complexes formed in aqueous solutions of trifluoroacetic acid according to IR spectroscopy data. Russ. J. Phys. Chem. 12, 185 (2018).

https://doi.org/10.1134/S1990793118020197

Ch.E. Wujcik, D. Zehavi, J.N. Seiber. Trifluoroacetic acid levels in 1994-1996 fog, rain, snow and surface waters from California and Nevada. Chemosphere 36, 1233 (1998).

https://doi.org/10.1016/S0045-6535(97)10044-3

S. Kutsuna, H. Hori. Experimental determination of Henry's law constants of trifluoroacetic acid at 278-298 K. Atmospheric Environment 42, 1399 (2008).

https://doi.org/10.1016/j.atmosenv.2007.11.009

V.D. Maiorov, I.S. Kislina, E.G. Tarakanova. Structure of complexes in the H2SO4-2-pyrrolidone system as determined by IR-spectroscopy and quantum-chemical calculations. Russ. J. Phys. Chem. B 11, 37 (2017).

https://doi.org/10.1134/S1990793117010080

E.G. Tarakanova, G.V. Yukhnevich. Structure of molecular complexes formed in aqueous solutions of trifluoroacetic acid. J. Struct. Chem. 55, 1409 (2014).

https://doi.org/10.1134/S0022476614080058

R.E. Asfin. IR spectra of hydrogen-bonded complexes of trifluoroacetic acid with acetone and diethyl ether in the gas phase. Interaction between CH and OH stretching vibrations. J. Phys. Chem. A 123, 3285 (2019).

https://doi.org/10.1021/acs.jpca.8b10215

J. Chocholousova, J. Vacek, P. Hobza. Acetic acid dimer in the gas phase, nonpolar solvent, microhydrated environment, and dilute and concentrated acetic acid: Ab initio quantum chemical and molecular dynamics simulations. J. Phys. Chem. A 107, 3086 (2003).

https://doi.org/10.1021/jp027637k

B. Ouyang, T.G. Starkey, B.J. Howard. High-resolution microwave studies of ring-structured complexes between trifluoroacetic acid and water. J. Phys. Chem. A 111, 6165 (2007).

https://doi.org/10.1021/jp071130y

M.W. Hnat, Z. Latajka, Z. Mielke, H. Ratajczak, Theoretical and infrared matrix isolation studies of the CF3COOH-N2 system, J. Mol. Struct. 129, 229 (1985).

https://doi.org/10.1016/0022-2860(85)80166-6

V. Sangeetha, M. Govindarajan, N. Kanagathara, M.K. Marchewka, S. Gunasekaran, G. Anbalagan. Structure and vibrational spectra of melaminium bis(trifluoroacetate) trihydrate: FT-IR, FT-Raman and quantum chemical calculations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 125, 252 (2014).

https://doi.org/10.1016/j.saa.2014.01.018

A.M. Petrosyan, V.V. Ghazaryan, G. Giester, M. Fleck. Sarcosine sarcosinium trifluoroacetate. J. Mol. Struct. 1115, 117 (2016).

https://doi.org/10.1016/j.molstruc.2016.02.094

V.H. Rodrigues, J.A. Paixao, M.M.R.R. Costa, A. Matos Beja. Sarcosinium trifluoroacetate. Acta Cryst. 56, 1053 (2000).

https://doi.org/10.1107/S010827010000809X

E.L. Valenti, M.B. Paci, C.P. De Pauli, C.E. Giacomelli. Infrared study of trifluoroacetic acid unpurified synthetic peptides in aqueous solution: Trifluoroacetic acid removal and band assignment. Anal. Biochem. 410, 118 (2011).

https://doi.org/10.1016/j.ab.2010.11.006

H. Hushvaktov, A. Jumabaev, I. Doroshenko, A. Absanov. Raman spectra and non-empirical calculations of dimethylformamide molecular clusters structure. Vib. Spectrosc. 117, 103315 (2021).

https://doi.org/10.1016/j.vibspec.2021.103315

H.T. Flakus, B. Hachuia. Effect of the resonance of the C-H and O-H bond stretching vibrations on the ir spectra of the hydrogen bond in formic and acetic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc 79, 1276 (2011).

https://doi.org/10.1016/j.saa.2011.04.054

J.W. Keller. The formic acid-trifluoroacetic acid bimolecule. Gas-phase infrared spectrum and computational studies. J. Phys. Chem. A 108, 4610 (2004).

https://doi.org/10.1021/jp049883x

M.D. Hurley, M.P. Andersen, T.J. Wallington, D.A. Ellis, J.W. Martin, S.A. Mabury. Atmospheric chemistry of perfluorinated carboxylic acids: Reaction with OH radicals and atmospheric lifetimes. J. Phys. Chem. A 108, 615 (2004).

https://doi.org/10.1021/jp036343b

K.A. Meyer, M.A. Suhm, Vibrational exciton coupling in homo and hetero dimers of carboxylic acids studied by linear infrared and Raman jet spectroscopy. J. Chem. Phys. 149, 104307 (2018).

https://doi.org/10.1063/1.5043400

S. Shin, Y. Park, Y. Kim, H. Kang. Dissociation of trifluoroacetic acid in amorphous solid water: Charge-delocalized hydroniums and zundel continuum absorption. J. Phys. Chem. C 121, 12842 (2017).

https://doi.org/10.1021/acs.jpcc.7b03415

T. Takamuku, Y. Kyoshoin, H. Noguchi, Sh. Kusano, T. Yamaguchi. Liquid structure of acetic acid-water and trifluoroacetic acid-water mixtures studied by large-angle X-ray scattering and NMR. J. Phys. Chem. B 111, 9270 (2007).

https://doi.org/10.1021/jp0724976

I.V. Gerasimov, K.G. Tokhadze. Spectroscopic determination of the energy of complexes of trifluoroacetic acid with proton acceptors in the gas phase. JPS 26, 1068 (1977).

https://doi.org/10.1007/BF01124484

I.V. Gerasimov, A.I. Kulbida, K.G. Tokhadze, V.M. Shraibe. Spectroscopic study of systems with a strong hydrogen bond at high temperatures. JPS 32, 1066 (1980).

https://doi.org/10.1007/BF00604291

D.R. Allan, S.J. Clark. Impeded dimer formation in the high-pressure crystal structure of formic acid. Phys. Rev. Lett. 82, 3464 (1999).

https://doi.org/10.1103/PhysRevLett.82.3464

T. Nakabayashi, N. Nishi. Monomeric and cluster states of acetic acid molecules in solutions: A Raman spectriscopic study. J. Annual Review 66 (2000).

T. Nakabayashi, N. Nishi. States of molecular associates in binary mixtures of acetic acid with aprotic polar solvents: The nature of mixture states at molecular levels. J. Annual Review 106, 61 (2002).

https://doi.org/10.1021/jp012606v

R. Vaidyanathan, S.N.R. Rao, Hydrogen bonded structures in organic amine oxalates. J. Mol. Struct. 608, 123 (2002).

https://doi.org/10.1016/S0022-2860(01)00944-9

G.A. Jeffrey. An Introduction to Hydrogen Bonding (Oxford University Press, 1997).

F.H. Tukhvatullin, U.N. Tashkenbaev, A. Jumaboev, A.G. Murodov, H. Khushvaktov, A. Absanov. Raman spectra and intermolecular interaction in formic acid and its solutions. J. Chem. Phys. 6, 205 (2003).

A.K. Atakhodjaev, F.Kh. Tukhvatullin, G. Muradov, A. Jumabaev, U.N. Tashkenbaev, A.A. Tursunkulov. Raman spectra of trifluoroacetic acid in the liquid state. Optics and Spectroscopy 80, 208 (1996).

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb et al. Gaussian 09, Revision A.02.

A. Jumabaev, U. Holikulov, H. Hushvaktov, N. Issaoui, A. Absanov. Intermolecular interactions in ethanol solution of OABA: Raman, FTIR, DFT, M062X, MEP, NBO, FMO, AIM, NCI, RDG analysis. J. Mol. Liq. 377, 121552 (2023).

https://doi.org/10.1016/j.molliq.2023.121552

M.Kh. Khodiev, U.A. Holikulov, N. Issaoui, O. Al-Dossary, L.G. Bousiakoug, N.L. Lavrik. Estimation of electrostatic and covalent contributions to the enthalpy of H-bond formation in H-complexes of 1,2,3-benzotriazole with protonacceptor molecules by IR spectroscopy and DFT calculations. J. King Saud Univ. Sci. 35, 3, 102530 (2023).

https://doi.org/10.1016/j.jksus.2022.102530

A. Jumabaev, U. Holikulov, H. Hushvaktov, A. Absanov, L. Bulavin. Interaction of valine with water molecules: Raman and DFT study. Ukr. J. Phys. 67, 602 (2022).

https://doi.org/10.15407/ujpe67.8.602

V.M. Belobrov. Hydrogen Bond (Naukova Dumka, 1991).

M.M. Sushchinsky. Spectra of Raman Scattering of Molecules and Crystals (Nauka, 1969).

G.V. Gusakova, G.S. Denisov, A.L. Smolensky. Spectroscopic determination of the energy of complexes of isobutyric acid with piperidine. JPS 860 (1971) [in Russian].

M.O. Bulanin, V.N. Bukhmarina, E.G. Moiseenko, K.G. Tokhodze. Infrared spectra of hydrogen halide solutions in liquefied gases. Opt. and Spectrum 56, 813 (1984).

F. Tukhvatullin, U. Tashkenbaev, A. Jumabaev, H. Hushvaktov, A. Absanov, B. Hudoyberdiev. Manifestation of intermolecular interactions in Raman spectra and ab initio calculations of molecular aggregation in liquid ethylene glycol. Ukr. J. Phys. 3, 219 (2014).

https://doi.org/10.15407/ujpe59.03.0219

F.Kh. Tukhvatullin, U.N. Tashkenbaev, A. Jumabaev, H. Khushvaktov, A. Absanov. Structure of molecular aggregates in liquids and their manifestations in Raman spectra. Monograph.: Sci. 288 (2014).

V. Krishnakumar, R. Mathammal, S. Muthunatesan. FTIR and Raman spectra vibrational assignments and density functional calculations of 1-naphthyl acetic acid. Spectrochimica Acta Part A 70, 210 (2008).

https://doi.org/10.1016/j.saa.2007.06.040

F. Wan, L. Du, W. Chen, P. Wang, J. Wang, H. Shi. A novel method to directly analyze dissolved acetic acid in transformer oil without extraction using Raman spectroscopy. Energies 10, 967 (2017).

https://doi.org/10.3390/en10070967

F.H. Tukhvatullin, B.G. Hudayberdiev, A. Jumabaev, H.A. Hushvaktov, A.A. Absanov. Aggregation of molecules in liquid pyridine and its solutions: Raman spectra and quantum-chemical calculations. J. Mol. Liq. 155, 67 (2010).

https://doi.org/10.1016/j.molliq.2010.05.015

F.H. Tukhvatullin, A. Jumabaev, G. Muradov, H.A. Hushvaktov, A.A. Absanov. Raman spectra of C≡N vibrations of acetonitrile in aqueous and other solutions. Experimental results and ab initio calculations. J. Raman Spectrosc. 36, 932 (2005).

https://doi.org/10.1002/jrs.1386

B.P. Asthana, V. Deckert, M.K. Shukla, W. Kiefer, Isotopic dilution study of self association in (CH3CN + CD3CN) mixture by scanning multichannel Raman difference technique and ab-initio calculations. Chem. Phys. Lett. 326, 123 (2000).

https://doi.org/10.1016/S0009-2614(00)00728-4

U. Holikulov. Structural, electronic and vibrational properties of L-asparagine. Uzbek Journal of Physics 25 (1), 46 (2023).

https://doi.org/10.52304/.v25i1.405

M. Khodiev, U. Holikulov, A. Jumabaev, N. Issaoui, N. Lavrik, O. Al-Dossary, L. Bousiakoug. Solvent effect on the self-association of the 1,2,4-triazole: A DFT study. J. Mol. Liq. 382, 121960 (2023).

https://doi.org/10.1016/j.molliq.2023.121960

Downloads

Опубліковано

2023-06-14

Як цитувати

Jumabaev, A., Absanov, A., Hushvaktov, H., & Bulavin, L. (2023). Раманівські спектри розсіювання і числові розрахунки в теорії функціоналу густини для міжмолекулярних взаємодій у трифтороцтовій кислоті та її розчинах. Український фізичний журнал, 68(4), 246. https://doi.org/10.15407/ujpe68.4.246

Номер

Розділ

Фізика рідин та рідинних систем, біофізика і медична фізика

Статті цього автора (авторів), які найбільше читають

<< < 1 2