Instability of a Tubular Electron Beam Blowing around a Plasma Solid-State Cylinder Located in a Strong Longitudinal Magnetic Field

Authors

  • Yu.O. Averkov O.Ya. Usikov Institute of Radiophysics and Electronics, Nat. Acad. of Sci. of Ukraine, V.N. Karazin National University of Kharkiv
  • Yu.V. Prokopenko O.Ya. Usikov Institute of Radiophysics and Electronics, Nat. Acad. of Sci. of Ukraine
  • V.M. Yakovenko O.Ya. Usikov Institute of Radiophysics and Electronics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe67.4.255

Keywords:

electron beam, space-charge wave, eigenwaves, coupled waves, beam instability, instability increment, Vavilov–Cherenkov effect

Abstract

An electrodynamic system, where a magnetized tubular electron beam blows around a cylindrical solid-state plasma waveguide, has been theoretically studied. It is established that the hybrid bulk-surface or surface electromagnetic waves of the helicon origin are excited in the waveguide, if quasi-stationary conditions are satisfied. The waveguide eigenwaves are excited by the beam space-charge field with the matching of the longitudinal spectral components of the electric field. The non-reciprocity effect is pointed out between the waveguide eigenwaves with the structurally identical field distributions but different azimuthal directions of propagation, as well as if the direction of the external magnetic field changes. It is shown that the instability of coupled waves of the electrodynamic system takes place due to the Vavilov–Cherenkov effect.

References

R. Kompfner. The Invention of the Traveling-Wave Tube (San Francisco Press, 1964).

L.A. Weinstein, V.A. Solntsev. Lectures on Microwave Electronics (Sovrtskoe Radio, 1973) (in Russian).

D.I. Trubetskov, A.E. Khramov. Lectures on Microwave Electronics for Physicists. Vol. 1 (Fizmatlit, 2003) (in Russian).

P.T. Chupikov, R.J. Faehl, I.N. Onishchenko, Yu.V. Prokopenko, S.S. Pushkarev. Vircator efficiency enhancement at plasma assistance. IEEE Trans. Plasma Sci. 34, 14 (2006).

https://doi.org/10.1109/TPS.2005.863590

M.V. Kuzelev, A.A. Rukhadze, P.S. Strelkov, Plasma Relativistic Microwave Electronics (Bauman Moscow State Technical University, 2002) (in Russian).

A.V. Dormidontov, A.Ya. Kirichenko, Yu.F. Lonin, A.G. Ponomarev, Yu.V. Prokopenko, G.V. Sotnikov, V.T. Uvarov, Yu.F. Filippov. Auto-oscillatory system based on dielectric resonator with whispering-gallery modes. Tech. Phys. Lett. 38, 85 (2012).

https://doi.org/10.1134/S106378501201021X

A.Ya. Kirichenko, Yu.F. Lonin, V.G. Papkovich, A.G. Ponomarev, Yu.V. Prokopenko, V.T. Uvarov, Yu.F. Filippov. Microwave oscillator with a "whispering gallery" resonator. Vopr. At. Nauki Tekhn. No. 2, 135 (2010).

V.A. Avgustinovich, S.N. Artemenko, A.I. Mashchenko, A.S. Shlapakovskii, Yu.G. Yushkov. Demonstrating gain in a dielectric Cherenkov maser with a rod slow-wave system. Tech. Phys. Lett. 36, 244 (2010).

https://doi.org/10.1134/S1063785010030132

A.I. Akhiezer, I.A. Akhiezer, R.V. Polovin, A.G. Sitenko, K.N. Stepanov. Plasma Electrodynamics (Pergamon Press, 1975), Vols. 1 and 2.

https://doi.org/10.1016/B978-0-08-017783-0.50005-1

Yu.O. Averkov, Yu.V. Prokopenko, V.M. Yakovenko. The instability of hollow electron beam interacting with plasma-like medium. Telecommun. Radio Eng. 75, 1467 (2016).

https://doi.org/10.1615/TelecomRadEng.v75.i16.50

P.T. Chupikov, N.P. Dikij, D.V. Medvedev, I.N. Onischenko, Yu.V. Prokopenko, S.S. Pushkarev. Acceleration of Ions a High-Current Relativistic Electron Beam at External Injection of Plasma. Ukr. J. Phys. 53, 640 (2008).

D.V. Medvedev, N.I. Onischenko, B.D. Panasenko, Yu.V. Prokopenko, S.S. Pushkarev, P.T. Chupikov. Ion acceleration in plasma injected into spatiotemporally modulated supercritical relativistic electron beam. Tech. Phys. Lett. 34, 789 (2008).

https://doi.org/10.1134/S1063785008090228

Yu.O. Averkov, Yu.V. Prokopenko, V.M. Yakovenko. Interaction between a tubular beam of charged particles and an anisotropic dispersive solid-state cylinder. Probl. At. Sci. Technol. No. 4, 3 (2018).

Yu.O. Averkov, Yu.V. Prokopenko, V.M. Yakovenko. Interaction between a tubular beam of charged particles and a dispersive metamaterial of cylindrical configuration. Phys. Rev. E 96, 013205 (2017).

https://doi.org/10.1103/PhysRevE.96.013205

O.V. Konstantinov, V.I. Perel'. Possible transmission of electromagnetic waves through a metal in a strong magnetic field. Sov. Phys. JETP 11, 117 (1960).

P. Aigrain. "Helicons" dans les semiconducteurs. In: Proceedings of the International Conference on Semiconduction Physics (Prague, 1960), p. 224.

R. Bowers, C. Legendy, and F. Rose. Oscillatory galvanomagnetic effect in metallic sodium. Phys. Rev. Lett. 7, 339 (1961).

https://doi.org/10.1103/PhysRevLett.7.339

N.N. Beletskii, A.P. Tetervov, V.M. Yakovenko. Nonpotential surface waves in magnetoactive semiconductor plasma. Fiz. Tekh. Poluprovodn. 6, 2129 (1972) (in Russian).

R.W. Boswell, F.F. Chen. Helicons - the early years. IEEE Trans. Plasma Sci. 25, 229 (1997).

https://doi.org/10.1109/27.650898

F.F. Chen, R.W. Boswell. Helicons - the past decade. IEEE Trans. Plasma Sci. 25, 1245 (1997).

https://doi.org/10.1109/27.650899

D. Arnush, F.F. Chen. Generalized theory of helicon waves. II. Excitation and absorption. Phys. Plasmas 5, 1239 (1998).

https://doi.org/10.1063/1.872782

N.N. Beletskii, V.M. Svetlichnyi, D.D. Halameida, V.M. Yakovenko. Electromagnetic Phenomena of the Microwave Range in Inhomogeneous Semiconductor Structures (Naukova Dumka, 1991) (in Russian).

Yu.O. Averkov, Yu.V. Prokopenko, V.M. Yakovenko. Helicons in solid-state plasma of cylindrical configuration. In 2020 IEEE Ukrainian Microwave Week (Kharkiv, 21-25 Sept. 2020).

https://doi.org/10.1109/UkrMW49653.2020.9252703

Yu.O. Averkov, Yu.V. Prokopenko, V.M. Yakovenko. Helicons in plasma solid-state waveguide of cylindrical configuration. Probl. At. Sci. Technol. No. 4, 19 (2019).

https://doi.org/10.46813/2019-122-019

Yu.O. Averkov, Yu.V. Prokopenko, V.M. Yakovenko. Waves of a magnetoplasma solid-state cylinder under quasi-stationary conditions. IEEE Trans. Plasma Sci. 49, 3078 (2021).

https://doi.org/10.1109/TPS.2021.3113117

T.M. Zaboronkova, A.V. Kudrin, M.Y. Lyakh, L.L. Popova. Nonsymmetric whistler waves guided by cylindrical ducts with enhanced plasma density. Radiophys. Quant. Electron. 45, 764 (2002).

T.M. Zaboronkova, A.V. Kudrin, M.Y. Lyakh. Excitation of nonsymmetric waves by given sources in a magnetoplasma in the presence of a cylindrical plasma channel. Radiophys. Quant. Electron. 46, 407 (2003).

https://doi.org/10.1023/A:1026371902173

V.A. Es'kin, T.M. Zaboronkova, A.V. Kudrin. Whistler waves guided by ducts with enhanced density in a collisional magnetoplasma. Radiophys. Quant Electron. 51, 28 (2008).

https://doi.org/10.1007/s11141-008-9003-0

P.V. Bakharev, T.M. Zaboronkova, A.V. Kudrin, C. Krafft. Whistler waves guided by density depletion ducts in a magnetoplasma. Plasma Phys. Rep. 36, 919 (2010).

https://doi.org/10.1134/S1063780X10110012

P. Zhu, R.W. Boswell. Ar II Laser generated by Landau damping of whistler waves at the lower hybrid frequency. Phys. Rev. Lett. 63, 2805 (1989).

https://doi.org/10.1103/PhysRevLett.63.2805

P. Zhu, R.W. Boswell. A new argon-ion laser based on an electrodeless plasma. J. Appl. Phys. 68, 1981 (1990).

https://doi.org/10.1063/1.346597

A.S. Belov, G.A. Markov. Stimulated ionization scattering of a wave beam forming a discharge channel in a magnetic mirror trap. Plasma Phys. Rep. 34, 223 (2008).

https://doi.org/10.1134/S1063780X08030094

V.F. Virko, Yu.V. Virko, V.M. Slobodyan, K.P. Shamrai. The effect of magnetic configuration on ion acceleration from a compact helicon source with permanent magnets. Plasma Sources Sci. Technol. 19, 015004 (2010).

https://doi.org/10.1088/0963-0252/19/1/015004

C. Charles, G. Giroult-Matlakowski, R.W. Boswell, A. Goullet, G. Turban, C. Cardinaud. Characterization of silicon dioxide films deposited at low pressure and temperature in a helicon diffusion reactor. J. Vac. Sci. Technol. A 11, 2954 (1993).

https://doi.org/10.1116/1.578675

R.N. Kaufman, N.A. Ryabov. Propagation of whistler waves in a cylindrical plasma waveguide bordering with vacuum. Fiz. Plazmy 6, 1027 (1980) (in Russian).

N.F. Vorobyov, A.A. Rukhadze. On excitation of helicon in a plasma cylinder with a surface current source. Fiz. Plazmy 20, 1065 (1994) (in Russian).

M. Kramer, Yu.M. Aliev, A.B. Altukhov, A.D. Gurchenko, E.Z. Gusakov, K. Niemi. Anomalous helicon wave absorption and parametric excitation of electrostatic fluctuations in a helicon-produced plasma. Plasma Phys. Control. Fusion 49, A167 (2007).

https://doi.org/10.1088/0741-3335/49/5A/S14

Yu.O. Averkov, Yu.V. Prokopenko, VM Yakovenko. Spectra of eigenwaves of a plasma solid-state cylinder in a strong longitudinal magnetic field. Radiofiz. Electron. 26, 37 (2021) (in Ukrainian).

K.P. Shamrai. Collective mechanisms for the absorption of RF power in helicon plasma sources. Plasma Phys. Rep. 25, 860 (1999).

S. Cho, M.A. Lieberman. Self-consistent discharge characteristics of collisional helicon plasmas. Phys. Plasmas 10, 882 (2003).

https://doi.org/10.1063/1.1542613

F.M.D. Pellegrino, M.I. Katsnelson, M. Polini. Helicons in Weyl semimetals. Phys. Rev. B 92, 201407(R) (2015).

https://doi.org/10.1103/PhysRevB.92.201407

E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, P.O. Sukhachov. Pseudomagnetic helicons. Phys. Rev. B 95, 115422 (2017).

https://doi.org/10.1103/PhysRevB.95.115422

Yu.O. Averkov, Yu.V. Prokopenko, V.M. Yakovenko. Eigenwave spectra of an anisotropic cylindrical solid-state waveguide. Tech. Phys. 64, 1 (2019).

https://doi.org/10.1134/S1063784219010055

L.D. Landau, E.M. Lifshitz. Electrodynamics of Continuous Media (Pergamon Press, 1984).

https://doi.org/10.1016/B978-0-08-030275-1.50007-2

V.G. Levich. Course in Theoretical Physics (Nauka, 1969), Vol. 1 (in Russian).

V.L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Gordon and Breach, 1961).

P.M. Platzman, P.A. Wolff. Waves and Interactions in Solid State Plasmas (Academic Press, 1973).

A.Ya. Kirichenko, Yu.V. Prokopenko, Yu.F. Filippov, N.T. Cherpak. Quasi-Optical Solid-State Resonators (Naukova Dumka, 2008) (in Russian).

Yu.O. Averkov, Yu.V. Prokopenko, V.M. Yakovenko. Numerical analysis of the interaction between a tubular beam of charged particles and a dielectric cylinder. J. Exper. Theor. Phys. 130, 737 (2020).

https://doi.org/10.1134/S1063776120030012

Yu.O. Averkov, Yu.V. Prokopenko, V.M. Yakovenko. Nonlinear theory of interaction between a tubular beam of charged particles and potential surface waves of plasma cylinder. Telecommun. Radio Eng. 78, 633 (2019).

https://doi.org/10.1615/TelecomRadEng.v78.i7.70

Yu.O. Averkov, Yu.V. Prokopenko, V. M. Yakovenko. Nonlinear stabilization of resistive instability of a tubular charged particle beam moving above a solid-state plasma cylinder. Plasma Phys. Rep. 45, 565 (2019).

https://doi.org/10.1134/S1063780X19060011

Ya.B. Fainberg, V.D. Shapiro. To the nonlinear theory of interaction between a relativistic beam and plasma. In: Interaction of Beams of Charged Particles with Plasma (Academy of Sciences of UkrSSR Publishing House, 1965) p. 92-103 (in Russian).

Ya.B. Fainberg, V.D. Shapiro, V.I. Shevchenko. Nonlinear theory of interaction between a "monochromatic" beam of relativistic electrons and a plasma. Sov. Phys. JETP 30, 528 (1970).

V.I. Kurilko. Nonlinear theory of cerenkov excitation of regular oscillations by a modulated beam of charged particles. Sov. Phys. JETP 30, 484 (1970).

W.E. Drummond, J.H. Malmberg, T.M. O'Neil, J.R. Thompson. Nonlinear development of the beam-plasma instability. Phys. Fluids 13, 2422 (1970).

https://doi.org/10.1063/1.1693255

R.I. Kovtun, A.A. Rukhadze. Nonlinear interaction of a low-density relativistic electron beam with a plasma. Sov. Phys. JETP 31, 915 (1970).

I.N. Onishchenko, A.R. Linetskii, N.G. Matsiborko, V.D. Shapiro, V.I. Shevchenko. Contribution to the nonlinear theory of excitation of a monochromatic plasma wave by an electron beam. JETP Lett. 12, 281 (1970).

I.N. Onishchenko, V.D. Shapiro, V.I. Shevchenko. On nonlinear theory of instability of a monoenergetic electron beam in plasma. Plasma Phys. 14, 591 (1972).

https://doi.org/10.1088/0032-1028/14/6/003

A.A. Ivanov, V.V. Parail, T.K. Soboleva Nonlinear Theory of the interaction between a monoenergetic beam and a dense plasma. Sov. Phys. JETP 63, 887 (1973).

B.A. Alterkop, S.E. Rosinskii, V.P. Tarakanov. Nonlinear interaction of a blowing electron beam with a surface plasma wave. Fiz. Plazmy 5, 291 (1979) (in Russian).

M.V. Kuzelev, O.V. Lazutchenko, A.A. Rukhadze. Regimes and spectra of the cherenkov beam instability in a nonlinear plasma. Radiophys. Quantum Electron. 42, 841 (1999).

https://doi.org/10.1007/BF02677097

Yu.O. Averkov, Yu.V. Prokopenko, V.M. Yakovenko. Interaction a flow of charged particles with eigenmodes of a dielectric cylinder. Telecommun. Radio Eng. 76, 1595 (2017).

https://doi.org/10.1615/TelecomRadEng.v76.i18.20

B.M. Marder, M.C. Clark, L.D. Bacon et al. The splitcavity oscillator: A high-power e-beam modulator and microwave source. IEEE Trans. Plasma Sci. 20, 312 (1992).

https://doi.org/10.1109/27.142833

K.V. Galaydych, Yu.F. Lonin, A.G. Ponomarev, Yu.V. Prokopenko, G.V. Sotnikov. Nonlinear analysis of mm waves excitation by high-current REB in dielectric resonator. Probl. At. Sci. Technol. No. 6, 158 (2012).

Published

2022-07-06

How to Cite

Averkov, Y., Prokopenko, Y., & Yakovenko, V. (2022). Instability of a Tubular Electron Beam Blowing around a Plasma Solid-State Cylinder Located in a Strong Longitudinal Magnetic Field. Ukrainian Journal of Physics, 67(4), 255. https://doi.org/10.15407/ujpe67.4.255

Issue

Section

Plasma physics