Резонансна структура перерізів розсіяння повільних електронів на атомі кальцію

Автор(и)

  • V.F. Gedeon Uzhhorod National University
  • V.Yu. Lazur Uzhhorod National University
  • S.V. Gedeon Uzhhorod National University
  • O.V. Yehiazarian Uzhhorod National University

DOI:

https://doi.org/10.15407/ujpe67.3.161

Ключові слова:

електрон, атом кальцiю, розсiяння, збудження, iонiзацiя, метод R-матрицi з B-сплайнами, неортогональнi орбiталi, резонанси

Анотація

З використанням розширеної БСР-версiї R-матричного методу проведено систематичне дослiдження розсiяння електронiв на нейтральному атомi кальцiю в дiапазонi енергiй зiткнення до 4,3 еВ. Для точного представлення хвильових функцiй мiшенi використовується метод сильного зв’язку з наборами залежних вiд терму неортогональних орбiталей та сплайн-представленнями для базисних функцiй. Розклад для сильного зв’язку включає 39 зв’язаних станiв нейтрального кальцiю, що охоплюють усi стани вiд основного до 4s8s 1S. Детально дослiджено складну резонансну структуру проiнтегрованих за кутом повних перерiзiв пружного е + Са-розсiяння та збудження станiв 4s4p 3Po, 3d4s 3De, 3d4s 1De, 4s4p 1Po і 4s5s 3Se атома Ca електронним ударом. Спостережуванi структури пов’язано з конкретними автовiдривними станами системи налiтаючий електрон + атом Ca. Визначено положення i ширини виявлених резонансiв та проведено їхню спектроскопiчну класифiкацiю.

Посилання

O. Zatsarinny, H. Parker, K. Bartschat. Electron-impact excitation and ionization of atomic calcium at intermediate energies. Phys. Rev. A 99, 012706 (2019).

https://doi.org/10.1103/PhysRevA.99.012706

J.L. Hall. Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys.78, 1279 (2006).

https://doi.org/10.1103/RevModPhys.78.1279

V.E. Fortov, B.Y. Sharkov, H. Stocker. European facility for antiproton and Ion research (FAIR): The new international center for fundamental physics and its research program. Phys.-Usp. 55, 582 (2012).

https://doi.org/10.3367/UFNe.0182.201206c.0621

Applied Atomic Collision Physics. Vol. 2: Plasmas. Edited by C.F. Barnett, M.F.A. Harrison (Academic Press, 1984).

E.Yu. Remeta, O.B. Shpenik, Yu.Yu. Bilak. Elastic scattering of slow electrons by calcium atoms into the angle interval depending on the collision energy. Zh. Tekhn Fiz. 71 (4), 13 (2001) (in Russian).

https://doi.org/10.1134/1.1365458

O. Zatsarinny, K. Bartschat, S. Gedeon, V. Gedeon, V. Lazur. Low-energy electron scattering from Ca atoms and photodetachment of Ca. Phys. Rev. A 74, 052708 (2006).

https://doi.org/10.1103/PhysRevA.74.052708

S. Gedeon, V. Gedeon, V. Lazur, L. Bandurina. Partially integrated differential cross-sections of e + Ca scattering. In Abstracts of the 9th European Conference on Atomic and Molecular Physics (ECAMP), 6-11 May 2007 (Crete, Greece, 2007).

S. Gedeon, V. Lazur. Low-energy electron scattering from calcium. In Abstracts of the 40th Annual Conference of the European Group for Atomic Systems (EGAS), 2-5 July 2008 (Graz, Austria, 2008).

O. Zatsarinny, K. Bartschat, S. Gedeon, V. Gedeon, V. Lazur, E. Nagy. Cross sections for electron scattering from magnesium. Phys. Rev. A 79, 052709 (2009).

https://doi.org/10.1103/PhysRevA.79.052709

O. Zatsarinny, K. Bartschat, S. Gedeon, V. Gedeon, V. Lazur, E. Nagy. Cross sections for electron scattering from magnesium. J. Phys.: Conf. Ser. 194, 042029 (2009).

https://doi.org/10.1088/1742-6596/194/4/042029

V. Gedeon, S. Gedeon, V. Lazur, E. Nagy, O. Zatsarinny, K. Bartschat. Electron scattering from silicon. Phys. Rev. A 85, 022711 (2012).

https://doi.org/10.1103/PhysRevA.85.022711

O. Zatsarinny, K. Bartschat, V. Gedeon, S. Gedeon, V. Lazur, E. Nagy. Electron scattering from silicon. In Abstracts of the 43rd Annual Meeting of the APS Division of Atomic, Molecular and Optical Physics (DAMOP12), 4-8 June 2012 (Orange County, California, 2012).

V. Gedeon, S. Gedeon, V. Lazur, E. Nagy, O. Zatsarinny, K. Bartschat. B-spline R-matrix-with-pseudostates calculations for electron-impact excitation and ionization of fluorine. Phys. Rev. A 89, 052713 (2014).

https://doi.org/10.1103/PhysRevA.89.052713

D.J. Pegg, J.S. Thompson, R.N. Compton, G.D. Alton. Evidence for a stable negative ion of calcium. Phys. Rev. Lett. 59, 2267 (1987).

https://doi.org/10.1103/PhysRevLett.59.2267

C.F. Fischer, J.B. Lagowski, S.H. Vosko. Ground states of Ca− and Sc− from two theoretical points of view. Phys. Rev. Lett. 59, 2263 (1987).

https://doi.org/10.1103/PhysRevLett.59.2263

P.G. Burke, W.D. Robb. The R-matrix theory of atomic processes. Adv. At. Mol. Phys. 11, 143 (1976).

https://doi.org/10.1016/S0065-2199(08)60030-5

P.G. Burke. R-matrix Theory of Atomic Collisions (Springer, 2011).

https://doi.org/10.1007/978-3-642-15931-2

A.R. Johnston, G.A. Gallup, P.D. Burrow. Low-lying negative-ion states of calcium. Phys. Rev. A 40, 4770 (1989).

https://doi.org/10.1103/PhysRevA.40.4770

N.I. Romanyuk, O.B. Shpenik, I.P. Zapesochnyi. Cross sections and characteristics of electron scattering by calcium, strontium, and barium atoms. JETP Lett. 32, 452 (1980).

N.I. Romanyuk, O.B. Shpenik, F.F. Papp, I.V. Chernysheva, I.A. Mandi, V.A. Kelemen, E.P. Sabad, E.Yu. Remeta. Study of low-energy scattering of electrons by Mg and Ca atoms using an optimized trochoidal spectrometer. Ukr. Fiz. Zh. 37, 1639 (1992) (in Russian).

V. Gedeon, S. Gedeon, V. Lazur, E. Nagy, O. Zatsarinny, K. Bartschat. B-spline R-matrix-with-pseudostates calculations for electron collisions with aluminum. Phys. Rev. A 92, 052701 (2015).

https://doi.org/10.1103/PhysRevA.92.052701

O. Zatsarinny, K. Bartschat, E. Nagy, S. Gedeon, V. Gedeon, V. Lazur. Electron scattering from aluminum: B-spline R-matrix calculations. J Phys.: Conf Ser. 635, 052012 (2015).

https://doi.org/10.1088/1742-6596/635/5/052012

O. Zatsarinny, K. Bartschat, E. Nagy, V. Gedeon, V. Lazur. Low-energy outer-shell photodetachment of the negative ion of aluminum. J. Phys.: Conf. Ser. 875, 022003 (2017).

https://doi.org/10.1088/1742-6596/875/3/022003

V. Gedeon, S. Gedeon, V. Lazur, O. Zatsarinny, K. Bartschat. Low-energy outer-shell photo-detachment of the negative ion of aluminum. J. Phys. B 51, 035004 (2018).

https://doi.org/10.1088/1361-6455/aa9c37

E.A Nagy V.F. Gedeon, S.V. Gedeon, V.Yu. Lazur. Electron-impact excitation of 51S − 51Po resonance transition in Sr atom. Ukr. J. Phys. 63, 11 (2018).

https://doi.org/10.15407/ujpe63.01.0011

N.Yu. Kondor, O.V. Yegiazarian, V.Yu. Lazur. Calculations of the energy structure of P, S atoms by the R-matrix method with B-splines. Nauk. Visn. Uzhgorod. Nats. Univ.

Ser. Fiz. 48, 67 (2020) (in Ukrainian).

A. Igarashi, N. Toshima, T. Shirai. Muon transfer and elastic scattering in t + dmu collisions at low energies. Phys. Rev. A 50, 4951 (1994).

https://doi.org/10.1103/PhysRevA.50.4951

A. Igarashi, I. Shimamura. Time-delay matrix analysis of resonances: application to the positronium negative ion. J. Phys. B 37, 4221 (2004).

https://doi.org/10.1088/0953-4075/37/21/001

I. Shimamura, J.F. McCann, A. Igarashi. Eigenvalues of the time-delay matrix in overlapping resonances. J. Phys. B 39, 1847 (2006).

https://doi.org/10.1088/0953-4075/39/8/003

K. Aiba, A. Igarashi, I. Shimamura. Time-delay matrix analysis of several overlapping resonances: applications to the helium atom and the positronium negative ion. J. Phys. B 40, F9 (2007).

https://doi.org/10.1088/0953-4075/40/2/F01

I. Shimamura. Complete separation of resonance and nonresonance channel spaces. J. Phys. B 44, 201002 (2011).

https://doi.org/10.1088/0953-4075/44/20/201002

O. Zatsarinny. BSR: B-spline atomic R-matrix codes. Comput. Phys. Commun. 174, 273 (2006).

https://doi.org/10.1016/j.cpc.2005.10.006

C. Bloch. Une formulation unifi'ee de la th'eorie des r'eactions nucl'eaires. Nucl. Phys. 4, 503 (1957).

https://doi.org/10.1016/0029-5582(87)90058-7

O. Zatsarinny, K. Bartschat. The B-spline R-matrix method for atomic processes: application to atomic structure, electron collisions and photoionization. J. Phys. B 46, 112001 (2013).

https://doi.org/10.1088/0953-4075/46/11/112001

P.J.A. Buttle. Solution of coupled equations by R-matrix techniques. Phys. Rev. 160, 719 (1967).

https://doi.org/10.1103/PhysRev.160.719

S. Gedeon, V. Lazur. The calculations of cross sections of electron scattering on Calcium atom. Nauk. Visn. Uzhgorod. Nats. Univ. Ser. Fiz. 25, 130 (2009).

O. Zatsarinny, C. Fischer. Atomic structure calculations using MCHF and BSR. Comput. Phys. Commun. 180, 2041 (2009).

https://doi.org/10.1016/j.cpc.2009.06.007

C. Froese Fischer, T. Tachiev. Allowed and spin-forbidden electric dipole transitions in Ca I. Phys. Rev. A 68, 012507 (2003).

https://doi.org/10.1103/PhysRevA.68.012507

J. Yuan, L. Fritsche. Electron scattering by Ca atoms and photodetachment of Ca− ions: An R-matrix study. Phys. Rev. A 55, 1020 (1997).

https://doi.org/10.1103/PhysRevA.55.1020

J. Yuan, C.D. Lin. Effect of core-valence electron correlation in low-energy electron scattering with Ca atoms. Phys. Rev. A 58, 2824 (1998).

https://doi.org/10.1103/PhysRevA.58.2824

J. Yuan. Core-valence electron correlation effects in photodetachment of Ca− ions. Phys. Rev. A 61, 012704 (1999).

https://doi.org/10.1103/PhysRevA.61.012704

NIST Atomic Spectra Database.

W.L. Wiese, J.R. Fuhr, T.M. Deters. Atomic transition probabilities of carbon, nitrogen, and oxygen: a critical data compilation. J. Phys. Chem. Ref. Data Monogr. 7, 522 (1996).

J.R. Taylor. Scattering Theory: The Quantum Theory on Nonrelativistic Collisions (John Wiley and Sons, Inc., 1972).

F. Nichitiu. Phase Shift Analysis in Physics of Nuclear Interactions (Mir, 1983) (in Russian).

F.T. Smith. Lifetime matrix in collision theory. Phys. Rev. 118, 349 (1960).

https://doi.org/10.1103/PhysRev.118.349

K. Bartschat, P.G. Burke. Resfit-A multichannel resonance fitting program. Comput. Phys. Commun. 41, 75 (1986).

https://doi.org/10.1016/0010-4655(86)90022-6

K. Bartschat, M.J. Kushner. Electron collisions with atoms, ions, molecules, and surfaces: fundamental science empowering advances in technology. Proc. Natl. Acad. Sci. 113, 7026 (2016).

https://doi.org/10.1073/pnas.1606132113

S.M. Kazakov, O.V. Khristoforov. Resonance scattering of low-energy electrons by calcium atoms. Zh. Tekhn. Fiz. 55, 795 (1985) (in Russian).

V.J. Ehlers, A. Gallagher. Electron excitation of the calcium 4227-˚A resonance line. Phys. Rev. A 7, 1573 (1973).

https://doi.org/10.1103/PhysRevA.7.1573

I.I. Garga, I.S. Aleksakhin, V.P. Starodub, I.P. Zapesochnyi. Excitation of alkaline-earth atoms by the electron impact. Opt. Spektrosk. 37, 843 (1974) (in Russian).

Опубліковано

2022-05-19

Як цитувати

Gedeon, V., Lazur, V., Gedeon, S., & Yehiazarian, O. (2022). Резонансна структура перерізів розсіяння повільних електронів на атомі кальцію. Український фізичний журнал, 67(3), 161. https://doi.org/10.15407/ujpe67.3.161

Номер

Розділ

Оптика, атоми і молекули