Regularities in Fullerene C60 Fragmentation According to Laser-Desorption Mass-Spectrometric and Quantum Chemical Data

Authors

  • A.B. Karpenko O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • V.S. Kuts O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • S.V. Snegir O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • V.A. Pokrovskiy O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.7.767

Keywords:

-

Abstract

Experimental and theoretical results concerning the regularities in the fullerene C60 fragmentation are reported. The destruction of C60 thermally deposited onto a silicon substrate is studied with the use of laser-desorption mass spectrometry and provided various values of laser radiation power. The intensity of
[C60]+ ions in the mass spectrum is shown to increase linearly, when the laser radiation power grows from 30 to 70% of its maximum. At the same time, the relative degree of C60  fragmentation first increases and then saturates at 50% of the laser power maximum. Two possible mechanisms of fullerene ionization are proposed. The electron structures of molecular, C60–2n, and cationic, [C60–2n]+, fullerene forms, where the parameter n = 0 to 4 indicates the number of lost C2 fragments, are calculated within the quantum chemistry method. The boundary molecular orbitals (EHOMO and ELUMO), adiabatic ionization potentials, and electron affinities are calculated.

References

O. Šedo, M. Alberti, J. Janča, and J. Havel, Carbon 44, 840 (2006).

https://doi.org/10.1016/j.carbon.2005.10.025

S.V. Snegir, T.Yu. Gromovyi, and V.O. Pokrovskyi, Metallofiz. Noveish. Tekhnol. 28, 255 (2006).

D. Hathiramani, P. Scheier, H. Bräuning, R. Trassl, E. Salzborn, L.P. Presnyakov. A.A. Narits, and D.B. Uskov, Nucl. Instrum. Methods B 212, 67 (2003).

https://doi.org/10.1016/S0168-583X(03)01481-2

V. Meza-Laguna, E.V. Basiuk (Golovataya-Dzhymbeeva), E. Alvarez-Zauco, T. Gromovoy, O. Amelines-Sarria, M. Bassiouk, I. Puente-Lee, and V.A. Basiuk, J. Nanosci. Nanotechnol. 8, 1 (2008).

https://doi.org/10.1166/jnn.2008.205

A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

https://doi.org/10.1063/1.464913

C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).

https://doi.org/10.1103/PhysRevB.37.785

M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, and J.A. Montgomery, J. Comput. Chem. 14, 11, 1347 (1993).

https://doi.org/10.1002/jcc.540141112

A.T. Lebedev, Mass Spectrometry in Organic Chemistry (BINOM Knowledge Laboratory, Moscow, 2003) (in Russian).

G.A. Semenov, E.N. Nikolaev, and K.E. Frantseva, Application of Mass Spectrometry in Inorganic Chemistry (Khimiya, Leningrad, 1976) (in Russian).

M.A. Khodorkovskii, S.V. Murashov, T.O. Artamonova, L.P. Rakcheeva, A.A. Belyaeva, A.S. Melnikov, and A.L. Shakhmin, Zh. Tekhn. Fiz. 79, 147 (2009).

R.L. Murry, D.L. Strout, G.K. Odom, and G.E. Scuseria, Nature 366, 665 (1993).

https://doi.org/10.1038/366665a0

R.L. Murry and D.L. Strout, Int. J. Mass Spectrom. Ion Proc. 138, 113 (1994).

https://doi.org/10.1016/0168-1176(94)04037-0

K.R. Bates and G.E. Scuseria, Theor. Chem. Acc. 99, 29 (1998).

https://doi.org/10.1007/s002140050299

B. Kubler, E. Millon, J.J. Gaumet, and J.F. Miller, Fullerene Sci. Technol. 4, 1247 (1996).

https://doi.org/10.1080/10641229608001177

Downloads

Published

2012-07-30

How to Cite

Karpenko, A., Kuts, V., Snegir, S., & Pokrovskiy, V. (2012). Regularities in Fullerene C60 Fragmentation According to Laser-Desorption Mass-Spectrometric and Quantum Chemical Data. Ukrainian Journal of Physics, 57(7), 767. https://doi.org/10.15407/ujpe57.7.767

Issue

Section

Nanosystems

Most read articles by the same author(s)