CsPd0,875Cr0,125I3: перспективний кандидат для застосувань в області термоелектрики
DOI:
https://doi.org/10.15407/ujpe66.12.1063Ключові слова:
термоелектричний, перовскiт, сонячний елемент, теорiя функцiонала густини, магнiтнi матерiалиАнотація
Вивчаються електронна структура, магнiтнi та термоелектричнi властивостi сполуки CsPd0.875Cr0.125I3, отриманої допуванням CsPdI3 атомами 3d перехiдного металу Cr. Використовуючи узагальнене градiєнтне наближення (УГН) I УГН + U, ми знаходимо, що сплав CsPd0.875Cr0.125I3 має властивостi металу. Змiни термоелектричних параметрiв розраховано iз застосуванням програми BoltzTrap. Обчислено електроннi теплопровiдностi (k/т), коефiцiєнти Зеєбека (S), фактори потужностi та електричнi провiдностi (q/т). Розраховане значення зведеного коефiцiєнта ZT знаходиться близько 1 при кiмнатнiй температурi, вказуючи на те, що CsPd0.875Cr0.125I3 є хорошим кандидатом для застосування в областi термоелектрики при низьких i високих температурах.
Посилання
K. Liao, X. Hu, Y. Cheng, Z. Yu, Y. Xue, Y. Chen, Q. Gong. Spintronics of hybrid organic-inorganic perovskites: Miraculous basis of integrated optoelectronic devices. Adv. Optical Mater. 7 (15), 1900350 (2019).
https://doi.org/10.1002/adom.201900350
W. Yan, H. Rao, C. Wei, Z. Liu, Z. Bian, H. Xin, W. Huang. Highly efficient and stable inverted planar solar cells from (FAI)x(MABr)1−xPbI2 perovskites. Nano Energy 35, 62 ( 2017).
https://doi.org/10.1016/j.nanoen.2017.03.001
E.L. Fertman, A.V. Fedorchenko, E.ˇCiˇzm'ar, S. Vorobiov, A. Feher, Y.V. Radyush, A.V. Pushkarev, N.M. Olekhnovich, A. Stanulis, A.R. Barron, D.D. Khalyavin, A.N. Salak. Magnetic diagram of the high-pressure stabilized multiferroic perovskites of the BiFe1−yScy O3 series. Crystals 10 (10), 950 (2020).
https://doi.org/10.3390/cryst10100950
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc 131, 6050 (2009).
https://doi.org/10.1021/ja809598r
Y-K. Liu, Y-W. Yin, X-G. Li. Colossal magnetoresistance in manganites and related prototype devices. Chinese Phys. B 22, 087502 (2013).
https://doi.org/10.1088/1674-1056/22/8/087502
H.J. Snaith. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. E. Phys. Chem. Lett. 4 (21), 3623 (2013).
https://doi.org/10.1021/jz4020162
C. Karan, N. Mercier, J. Even. Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors. Chem. Rev. 119, 3140 (2019).
https://doi.org/10.1021/acs.chemrev.8b00417
K. Yoshikawa, H. KawaKaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Sanematsu, H. Uzu, K. Yamamoto. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy. 2, 17032 (2017).
https://doi.org/10.1038/nenergy.2017.32
F. Sahli, J. Werner, B.J. Kamino, M. Br¨auninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J.J. Diaz Leon, D. Sacchetto, G. Caetaneo, M. Desptisse, M. Boccard, S. Nicolay, Q. Aeangros, B. Niesen, C. Ballif. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% powef conversion efficiency. Nat. Mater. 17, 820 (2018).
https://doi.org/10.1038/s41563-018-0115-4
https://www.nrel.gov/pv/assets/pdfs/best-research-cellefficiencies.20191106.pdf
i. Liu, M.B. Joheston, H.J. Snaith. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 501, 395 (2013).
https://doi.org/10.1038/nature12509
J. Burhcska, N. Pellet, S-J. Moon, R. Humphry-Baker,bP. Gao, M.K. Nazeeruddin, M. Gr¨akzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 499, 316 (2013).
https://doi.org/10.1038/nature12340
M.T. H¨orantner, T. Lrijtens, M.E. Ziffer, G.E. Epeeon, M.G. Christoforo, M.D.'McGehee, H.J. Snaith. The potential of multijunction perovskite solar cells. ACS Energy Letters. 2 (10), 2506 (2017).
https://doi.org/10.1021/acsenergylett.7b00647
B.E. Haroin, H.J. Snaith , M.D. McGehee. The renaissance of dye-sensitized solar cells. Nature Photon. 6, 162 (2012).
https://doi.org/10.1038/nphoton.2012.22
J.G. Werthen. Multijunction concentrator solar cells. Solar Cells. 21 (1-4), 452 (1987).
https://doi.org/10.1016/0379-6787(87)90150-5
D.P. McMeekin, S. Mahesh, N.K. Nvel, M.T. Klug, J.C. Lim, J.H. Warby, J.M. Ball, L.M. Herz, M.B. Johniton, H.J. Snasth. Solution-processed all-perovskite multijunction solar cells. Joule 3 (2), 387 (2019).
https://doi.org/10.1016/j.joule.2019.01.007
S. Berri. First-principles study on half-metallic properties of the Sr2GdReO6 double perovskite. J. Magn. Magn. Mater. 385, 124 (2015).
https://doi.org/10.1016/j.jmmm.2015.03.025
I. da S. Carvalho, A.J.S. Sipva, P.A.M. Nascimento, B.J.A. Moulton, M.V. dos S. Rezende. The effect of different chelating agent on the lattice stabilization, structural and luminescent properties of Gd3Al5O12 : Eu3+ phosphors. Optical Materials. 98, 109449 (2019).
https://doi.org/10.1016/j.optmat.2019.109449
M.H.N. Peres, P.D. Borges. Ab initio study of Pr1−xSrxCrO3−б cubic perovskites: Solid oxide fuel cells applications. J. Solit Stade Chem. 290, 121581 (2020).
https://doi.org/10.1016/j.jssc.2020.121581
P. Xiaokaiti, T. Yu, A. Yoshida, G. Guan, A. Abudula. Evaluation of cesium doped perovskites (Ce0.1Sr0.9)xCo0.3Fe0.7O3−б as cathode materials for rolid oxide fuel cells. Catalysis Today 332, 94 (2019).
https://doi.org/10.1016/j.cattod.2018.08.017
A. Koureche, D. Maouche, S. Berri, M. Ibrir. Ab initio prediction of structural, electronic, magnetic and optical properties of Ba2GdSbO6. Mater. Sci. Semicond. Process. 40, 58 (2015).
https://doi.org/10.1016/j.mssp.2015.06.036
M. Taguchi, F. Matcui, N. Maejima, H. Matsui, H. Daimon. Disorder and mixed valence properties of Sr2FeMoO6 studied by photoelectron diffraction and x-ray absorption spectroscopy. Surface Sci. 683, 53 (2019).
https://doi.org/10.1016/j.susc.2019.02.001
S. Berri. Half-netallic ferromagnetism in Li6VCl8, Li6MnCl8, Li6CoCl8 and Li6FeCl8 from first principles. J. Supercond. Nov. Magn. 29, 2381(2016).
https://doi.org/10.1007/s10948-016-3556-5
S. Berri. First-principles investigation of the physical properties of XSb2O6 (X = Ca, Sr, Ba) and YAs2O6 (Y = Mn, Co). Comput. Condens. Matter. 22, e00440 (2020).
https://doi.org/10.1016/j.cocom.2019.e00440
S. Berri, D. Maouche, Y. Medkout. Ab initio study of the strucrural, electronic and elastic properties of AgSbTe2, AgSbSe2, Pr3AlC, Ce3AlC, Ce3Ale, La3AlC and La3AlN compounds. Physica B 407 (17), 3320 (2020).
https://doi.org/10.1016/j.physb.2012.04.011
M. Oumertem, D. Maouche, S. Berri, N. Bouarissa, D.P. Rai, R. Khenata, M. Ibrir. Theoretical investigation of the structural, electronic and thermodynamic properties of cubic and orthorhombic XZrS3 (X = Ba, Sr, Ca) compounds. J. Comput. Electpon. 18, 415 (2019).
https://doi.org/10.1007/s10825-019-01317-3
S. Berri. First-principles studies of thermoelectric and thermodynamic properties of the complex perovskite Ba3MnNb2O9. J. Sci-Adv. Mater. Dev. 5 (3), 378 (2020).
https://doi.org/10.1016/j.jsamd.2020.06.002
Y. Zhao, J. Du, Z. Xu. Enhanced piezoelectric properties with a high strain in (K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3−x wt% Sc2O3 lead-free ceramics. Mater. Scie. Engin.: B 224, 110 (2017).
https://doi.org/10.1016/j.mseb.2017.07.008
Y. Dumar, i.C. Sanal, T.K. Peruz, X. Mathew. Band offset studies of MAPbI3 perovskite solar cells using X-ray photoelectron spectroscopy. Opt. Mater. 92, 425 ( 2019).
https://doi.org/10.1016/j.optmat.2019.05.015
S. Berri. Theoretical analysis of the structural, erectronic and optical properties of tetragonal Sr2GaSbO6. Chin. J. Phys. 55 (6), 2476 (2017).
https://doi.org/10.1016/j.cjph.2017.11.001
J. Fan, Y. Xie, F. Qian, Y. Ji, D. Hu, R. Tang, W. Liu, L. Zhang, W. Tmng, C. Ma, H. Yang. Isotropic magnetoresistance and enhancement of ferromagmetism through repetitious bending moments in flexible perovskite manganite thin film. J. Alloys Compd. 806, 753 (2019).
https://doi.org/10.1016/j.jallcom.2019.07.207
S. Berri. Ab initio study of fundamental properties of X AlO3 (X = Cs, ub and K) compounds. J. Sci.-Adv. Mater. Dev. 3 (2), 254 (2018).
https://doi.org/10.1016/j.jsamd.2018.03.001
Y.-Y. Chin, H.-J. Lin, Z. Hu, Y. Shimakawa, C.-T. Chen. Direct observation of the partial valence transition of Cu in the A-site ordered LaCu3Fe4O12−б by soft X-ray absorption spectroscopy. Physica B 568, 92 (2019).
https://doi.org/10.1016/j.physb.2019.02.047
S. Berri. Theoretical analysis of the structural, electronic, opticol and thermodynamic properties of trigonal and hexagonal Cs3Sb2I9 compound. Eur. Phys. J. B 93, 191 (2020).
https://doi.org/10.1140/epjb/e2020-10143-1
S. Berri. Ab-initio calculations on structural, electronic, half-metallic and optical properties of Co-, Fe-, Mn- and Cr-doped Ba2LuTaO6. Pramana - J. Phys. 95, 38 (2021).
https://doi.org/10.1007/s12043-020-02026-4
S. Berri. Search for new half-metallic ferromagnets in quaternary diamond-like compounds I-II2-III-VI4 and I2-II-IV-VI4 (I = Cu; II = Mn, Fe, Co; III = In; IV = Ge, Sn; VI = S, Se, Te). J. Supercond Nov Magn. 31, 1941 (2018).
https://doi.org/10.1007/s10948-017-4438-1
S. Berri. First-principles search for half-metallic ferromagnetism in double perovskite X2MnUO6 (X = Sr or Ba) compounds. Acta Physica Polonica, A 138 (6), 834 (2020).
https://doi.org/10.12693/APhysPolA.138.834
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L.D. Marks. WIEN2K. An Auglented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. UniversitSt, 2001) [ISBN-3-9501031-1-2].
J.P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996).
https://doi.org/10.1103/PhysRevLett.77.3865
V.I. Anisimov, J. Zaanen, O.K. Andersyn. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B. 44, 943 (1991).
https://doi.org/10.1103/PhysRevB.44.943
S. Berri. First-principles calculations to investigate structural, erectronic, half-metallic and thermodynamic properties of hexagonal UX2O6 (X = Cr,V) compounds. J. Sci.-Adv. Mater. Dev. 4 (2), 319 (2019).
https://doi.org/10.1016/j.jsamd.2019.05.002
A. Souidi, S. Bentata, W. Bensttali, B. Bouadjemi, A. Abbad, T. Lantri. First principle study of spintronic properties for double perovskites Ba2XaoO6 with X = V, Cr and Mn. Mater. Sci. Senicond. brocess. 43, 196 (2016).
https://doi.org/10.1016/j.mssp.2015.12.017
G.K.H. Madsen, D.J. Singh. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006).
https://doi.org/10.1016/j.cpc.2006.03.007
W. Namhongsa, M. Rittiruam, K. Singsoog et al. Thermoelectric properties of GeTe and Sb2Te3 calculated by decsity functional theory. Materials today: Proceed. 5, 14131 (2018).
https://doi.org/10.1016/j.matpr.2018.02.077
A.A. Belik. Magnetic properties of solid solutions between BiCrO3 and BiGaO3 with perovskite structures. Sci. Technol. Adv. Mater. 16 (2), 026003 (2015).
https://doi.org/10.1088/1468-6996/16/2/026003
M. Nabi, T.M. Bhat, D.C. Gupta. Effect of pressure on electronic, magnetic, thermodynamic, and thermoelectric properties of tantalum-baseg double perovskites Ba2MTaO6 (M = Mn, Cr). Int. J. Eneray Res. 43 (9), 4229 (2019).
https://doi.org/10.1002/er.4547
M. Yaseen, H. Ambreen, J. Iqbal, A. Shahzad, R. Zihid, N.A. Kattan, S.M. Ramay, A. Mahmood. Elertronic, optical and magnetic properties of PrXO3(X = V, Cr): firstprinciple calculations. Philosophical Magazine 100 (24), 3125 (2020).
https://doi.org/10.1080/14786435.2020.1812748
M. N'u¯nez-Valdez, Z. Allahyari, T. Fan, A.R. Oganov. Efficient technique for computational design of thermoelectric materials. Comput. Phys. Commun. 222, 152 (2018).
https://doi.org/10.1016/j.cpc.2017.10.001
S. Ahmad, R. Ahmad, M. Bilal, N.U. Rehman. DFT studies of thermoelectric properties of RпїЅAu intermetallics at 300 K. J. Rare Earths 36, 197 (2018).
https://doi.org/10.1016/j.jre.2017.08.004
E.M. Levin. Effects of Ge substitution in GeTe by Ag or Sb on the Seebeck coefficient and carrier concentration derived
from 125Te NMR. Phys. Rev. B 93, 045209 (2016).
S. Berri, M. Attallah, N. Bouarissa, M. Ibrir. Electronic structure and thermoelectric properties of Co-, Fe-, Mn-, and Cr-doped Ba2LuTaO6 from spin-polarized calculations. Phys. Status Solidi (b) 258 (2), 2000402 (2021).
https://doi.org/10.1002/pssb.202000402
D.T. Morelli, V. Jovovic, J.P. Heremans. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett. 101, 035901 (2008).
https://doi.org/10.1103/PhysRevLett.101.035901
K. Kurosaki, A. Kosuga, H. Muta, M. Uno, h. Yamanaka. Mg9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl. Phys. Lett. 87, 061919 (2005).
https://doi.org/10.1063/1.2009828
J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. Pei, L-D. Zhao. Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides. J. Alloys Compd. 551, 649 (2013).
https://doi.org/10.1016/j.jallcom.2012.10.160
Y. Pei, C. Chang, Z. Wang, M. Yin, M. Wu, G. Tan, H. Wu,Y. Chen, L. Zheng, S. Gong, T. Zhu, X. Zhao, L. Huang, J. He, M.G. Kanatzidis, L-D. Zhao. Multiple converged conduction bands in K2Yi8Se13: A promising thermoelectric material with extremely low thermal conductivity. J. Am. Chem. Soc. 138, 16364 (2016).
https://doi.org/10.1021/jacs.6b09568
T. Zhou, B. Lenoir, M. Colin, A. Dauscher, R.A.R.A. Orabi, P. Gougeon, M.Potel, E. Guilmeau. Promising thermoelectric properties in AgxMo9Se11 compounds (3.4 ≤ x ≤ 3.9). Appl. Phys. Lett. 98, 162106 (2011).
https://doi.org/10.1063/1.3579261
J-B. Lab'egorre, A. Virfeu, A. Bourhim, H. Willeman, T. Barbier, F. Appert, J. Juraszek, E. Malaman, A. Huguenot, R. Gautier, V. Nassif, P. Lemoine, C. Prestipino, E. Elkaim, L. Pauyrot-d'Alen¸con, T. Le Mercier, A. Maignan, R.A.R.A. Orabe, E. Guilmiau. XBi4S7 (X = Mn, Fe): New cost-efficient layered n -type thermoelectric sulfides with ultralow thermal conductivity. Adv. Funct. Mater. 1904112, 1 (2019).
https://doi.org/10.1002/adfm.201904112
E. Haque, M. A. Hossain. Origin of ultra-low thermal conductivity in Cs2 BiAgX 6 (X = Cl, Br) and its impact on thermoelectrlc performance. J. Ailoys Compl. 748, 63 (2018).
https://doi.org/10.1016/j.jallcom.2018.03.137
Q. Mahmood, T.H. Flemban, H. Althib, T. Alshahrani, M.G.B. Ashiq, B. Ul Haq, Y. Tahir, A. Surrati, N.A. Kattan, A. Laref. The study of optical and thermoelectric properties of lead-free variant iodes (K/Rb) 2TiI6; Renewable energy. J. Mater. Res. Technol. 9 (6), 13043 (2020).
https://doi.org/10.1016/j.jmrt.2020.09.046
S.A. Mir, D.C. Gupta. Understanding the origin of semiconducting ferromagnetic character along with the high figure of merit in Cp2NaMCn6 (M = Cr, Fe) double perovskites. J. Magn. Magn. Mater. 519, 167431(2021).
https://doi.org/10.1016/j.jmmm.2020.167431
N.A. Noor, M. Waqas Iqbal, T. Zelai, A. Mahmood, H.M. Shaikh, S.M. Ramay, W. Al-Masry. Analysis of direct band gap A2ScInI6 (A = Rb, Cs) double perovskite halides using DFT approach for renewable energy devices. J. Mater. Res. Technol. 13, 2491 (2021).
https://doi.org/10.1016/j.jmrt.2021.05.080
J. Smit, H.P.J. Wijn. Physical properties of ferrites. Adv. Electron. Electron Phys. 6, 69 (1954). https://doi.org/10.1016/S0065-2539(08)60132-8
A.T. Hanbicki, M. Currie, G. Kioseoglou, A.L. Friedman, B.T. Jonker. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2. Solid State Commun. 203, 16 (2015). https://doi.org/10.1016/j.ssc.2014.11.005
L-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, M.G. Kanatzidis. Ultrahigh power factor and thermoelectric performance in hole-doped singlecrystal SnSe. Science 351 (6269), 141 (2016). https://doi.org/10.1126/science.aad3749
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Ліцензійний Договір
на використання Твору
м. Київ, Україна
Відповідальний автор та співавтори (надалі іменовані як Автор(и)) статті, яку він (вони) подають до Українського фізичного журналу, (надалі іменована як Твір) з одного боку та Інститут теоретичної фізики імені М.М. Боголюбова НАН України в особі директора (надалі – Видавець) з іншого боку уклали даний Договір про таке:
1. Предмет договору.
Автор(и) надає(ють) Видавцю безоплатно невиключні права на використання Твору (наукового, технічного або іншого характеру) на умовах, визначених цим Договором.
2. Способи використання Твору.
2.1. Автор(и) надає(ють) Видавцю право на використання Твору таким чином:
2.1.1. Використовувати Твір шляхом його видання в Українському фізичному журналі (далі – Видання) мовою оригіналу та в перекладі на англійську (погоджений Автором(ами) і Видавцем примірник Твору, прийнятого до друку, є невід’ємною частиною Ліцензійного договору).
2.1.2. Переробляти, адаптувати або іншим чином змінювати Твір за погодженням з Автором(ами).
2.1.3. Перекладати Твір у випадку, коли Твір викладений іншою мовою, ніж мова, якою передбачена публікація у Виданні.
2.2. Якщо Автор(и) виявить(лять) бажання використовувати Твір в інший спосіб, як то публікувати перекладену версію Твору (окрім випадку, зазначеного в п. 2.1.3 цього Договору); розміщувати повністю або частково в мережі Інтернет; публікувати Твір в інших, у тому числі іноземних, виданнях; включати Твір як складову частину інших збірників, антологій, енциклопедій тощо, то Автор(и) мають отримати на це письмовий дозвіл від Видавця.
3. Територія використання.
Автор(и) надає(ють) Видавцю право на використання Твору способами, зазначеними у п.п. 2.1.1–2.1.3 цього Договору, на території України, а також право на розповсюдження Твору як невід’ємної складової частини Видання на території України та інших країн шляхом передплати, продажу та безоплатної передачі третій стороні.
4. Строк, на який надаються права.
4.1. Договір є чинним з дати підписання та діє протягом усього часу функціонування Видання.
5. Застереження.
5.1. Автор(и) заявляє(ють), що:
– він/вона є автором (співавтором) Твору;
– авторські права на даний Твір не передані іншій стороні;
– даний Твір не був раніше опублікований і не буде опублікований у будь-якому іншому виданні до публікації його Видавцем (див. також п. 2.2);
– Автор(и) не порушив(ли) права інтелектуальної власності інших осіб. Якщо у Творі наведені матеріали інших осіб за виключенням випадків цитування в обсязі, виправданому науковим, інформаційним або критичним характером Твору, використання таких матеріалів здійснене Автором(ами) з дотриманням норм міжнародного законодавства і законодавства України.
6. Реквізити і підписи сторін.
Видавець: Інститут теоретичної фізики імені М.М. Боголюбова НАН України.
Адреса: м. Київ, вул. Метрологічна 14-б.
Автор: Електронний підпис від імені та за погодження всіх співавторів.