Статистичне описання нерівноважних багаточастинкових систем

Автор(и)

  • B.I. Lev Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • A.G. Zagorodny Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe65.12.1056

Ключові слова:

нерiвноважний статистичний оператор, багаточастинковi системи, стацiонарнi стани

Анотація

Системи частинок, що взаємодiють, в багатьох випадках є нерiвноважними. В даному оглядi представлено новий пiдхiд, заснований на застосуваннi нерiвноважного статистичного оператора, який дає змогу врахувати неоднорiдний розподiл частинок i
температури. Такий метод використовує процедуру сiдлової точки для знаходження основних внескiв у статистичну суму i надає можливостi отримати всi термодинамiчнi параметри систем. Передбачено можливi особливостi поведiнки взаємодiйних систем, таких як ґравiтiвнi системи, системи з кулонiвським вiдштовхуванням тощо для рiзних термодинамiчних умов. Запропоновано новий пiдхiд для описування нерiвноважних систем в енергетичному просторi, що є розширенням пiдходу Гiбса для
макроскопiчних систем за нерiвноважних умов. Цей пiдхiд уможливлює описати стацiонарнi стани нерiвноважних систем та їхню динамiку.

Посилання

W. Thirring. Systems with negative specific heat. Z. Phys. 235, 339 (1970). https://doi.org/10.1007/BF01403177

P.-H. Chavanis, C. Rosier, C. Sire. Thermodynamics of self-gravitating systems. Phys. Rev. E 66, 036105 (2002). https://doi.org/10.1103/PhysRevE.66.036105

D.N. Zubarev. Non-Equilibrium Statistical Thermodynamics (Consultants Bureau, 1974). https://doi.org/10.21236/AD0784411

V. Laliena. On the thermodynamical limit of self-gravitating systems. Nucl. Phys. B 668, 403 (2003). https://doi.org/10.1016/j.nuclphysb.2003.07.005

R. Pakter, B. Marcos, Y. Levin. Symmetry breaking in d-dimensional self-gravitating systems. Phys. Rev. Lett. 111, 230603 (2013). https://doi.org/10.1103/PhysRevLett.111.230603

F.P.C. Benetti, A.C. Ribeiro-Teixeira, R. Pakter, Y. Levin. Nonequilibrium stationary states of 3D self-gravitating systems. Phys. Rev. Lett. 113, 100602 (2014). https://doi.org/10.1103/PhysRevLett.113.100602

R. Baxter. Exactly Solved Models in Statistical Mechanics (Academic Press, 1980).

D. Ruelle. Statistical Mechanics (Rigorous Results) (Benjamin, 1969).

Y.D. Bilotsky, B.I. Lev. Clustering in condensed media. Teor. Mat. Fiz. 60, 711 (1984) (in Russian). https://doi.org/10.1007/BF01018256

B.I. Lev, A.Ya. Zhugaevych. Statistical description of model systems of interacting particles and phase transitions accompanied by cluster formation. Phys. Rev. E. 57, 6460 (1998). https://doi.org/10.1103/PhysRevE.57.6460

B.I. Lev. Nonequilibrium self-gravitating system. Int. J. Mod. Phys. B 25, 2237 (2011). https://doi.org/10.1142/S0217979211100771

H. Kleinert. Gauge Field in Condensed Matter (Word Scientific, 1989). https://doi.org/10.1142/0356

R.L. Stratonovich. On a method of calculating quantum distribution functions. Sov. Phys. Dokl. 2, 416 (1958).

J. Hubbard. Calculation of partition functions. Phys. Rev. Lett. 3, 77 (1958). https://doi.org/10.1103/PhysRevLett.3.77

K.V. Grigorishin, B.I. Lev. Cluster formation in the system of interacting Bose particles. Phys. Rev. E 71, 066105 (2005). https://doi.org/10.1103/PhysRevE.71.066105

T. Padmanabhan. Statistical mechanics of gravitating system. Phys. Rep. 188, 285 (1990). https://doi.org/10.1016/0370-1573(90)90051-3

P.-H. Chavanis. Phase transitions in self-gravitating systems.Int. J. Mod. Phys. B 20, 3113 (2006). https://doi.org/10.1142/S0217979206035400

S. Chandrasekhar. An Introduction to the Study of Stellar Structure (Dover, 1942).

C. Sire, P.-H. Chavanis. Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions. Phys. Rev. E 66, 046133 (2002). https://doi.org/10.1103/PhysRevE.66.046133

E.B. Aronson, C.J. Hansen. Thermal equilibrium states of a classical system with gravitation. Astrophys. J. 117, 145 (1972). https://doi.org/10.1086/151693

K. Huang. Statistical Mechanics (Wiley, 1963) [ISBN: 978-0-471-81518-1].

A. Isihara. Statistical Physics (Academic Press, 1971).

S. Shaikh, A. Khan. Instability of thermally conducting self-gravitating systems. J. Mod. Phys. 1, 77 (2010). https://doi.org/10.4236/jmp.2010.110010

B.I. Lev. Brownian system in energy space. Eur. Phys. J. Spec. Topics 216, 37 (2013). https://doi.org/10.1140/epjst/e2013-01727-1

H.-J. de Vega, N. S'anchez. The statistical mechanics of the self-gravitating gas: equation of state and fractal dimension. Phys. Lett. B 490, 180 (2000). https://doi.org/10.1016/S0370-2693(00)00973-4

H.-J. de Vega, N. S'anchez. Statistical mechanics of the self-gravitating gas: I. Thermodynamic limit and phase diagrams. Nucl. Phys. B 625, 409 (2002). https://doi.org/10.1016/S0550-3213(02)00025-1

H.-J. de Vega, N. S'anchez. Statistical mechanics of the self-gravitating gas: II. Local physical magnitudes and fractal structures. Nucl. Phys. B 625, 460 (2002). https://doi.org/10.1016/S0550-3213(02)00026-3

W.C. Saslow. Gravitational Physics of Stellar and Galactic Systems (Cambridge Univ. Press, 1987).

D. Lynden-Bell, R. Wood. The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon. Not. R. Astron. Soc. 138, 495 (1968). https://doi.org/10.1093/mnras/138.4.495

H.J. de Vega, N. S'anchez, F. Combes. Fractal dimensions and scaling laws in the interstellar medium: A new field theory approach. Phys. Rev. D 54, 6008 (1996). https://doi.org/10.1103/PhysRevD.54.6008

J.A.S. Lima, R. Silva, J. Santos. Jeans' gravitational instability and nonextensive kinetic theory. Astron. Astrophys. 396, 309 (2002). https://doi.org/10.1051/0004-6361:20021395

A.P. Boss. Giant planet formation by gravitational instability. Science 276, 1836 (1997). https://doi.org/10.1126/science.276.5320.1836

S.M. Fall. Gravitational instability theory of galaxy formation and clustering: Some recent developments. Ann. NY Acad. Sci. 336, 172 (2006). https://doi.org/10.1111/j.1749-6632.1980.tb15928.x

H. Kleinert. Collective quantum fields. Fortschr. Phys. 26, 565 (1979). https://doi.org/10.1002/prop.19780261102

L.N. Lipatov. Divergence of the perturbation-theory series and the quasi-classical theory. JETP (Sov) 72, 412 (1977).

S. Edward, A. Lenard. Exact statistical mechanics of a one-dimensional system with Coulomb forces. II. The method of functional integration. J. Math. Phys. 3, 778 (1962). https://doi.org/10.1063/1.1724281

B.I. Lev, A.G. Zagorodny. Statistical description of Coulomb-like systems. Phys. Rev. E 84, 061115 (2011). https://doi.org/10.1103/PhysRevE.84.061115

B.I. Lev. Statistical induced dynamic of self-gravitating system. J. Mod. Phys. 10, 687 (2019). https://doi.org/10.4236/jmp.2019.107049

B.I. Lev. Statistical derivation of the fundamental scalar field. J. Mod. Phys. 9, 2223 (2018). https://doi.org/10.4236/jmp.2018.912140

B.I. Lev, S.B. Lev. Statistical description of nonequilibrium self-gravitating systems. Eur. Phys. J. B 9, 3 (2017).

S. Samuel. Grand partition function in field theory with applications to sine-Gordon field theory. Phys. Rev. D 18, 1916 (1978). https://doi.org/10.1103/PhysRevD.18.1916

A.D. Linde. Elementary Particle Physics and Inflationary Cosmology (Harwood Academic, 1990). https://doi.org/10.1201/9780367807788

A.D. Linde. Phase transitions in gauge theories and cosmology. Rep. Prog. Phys. 42, 389 (1979). https://doi.org/10.1088/0034-4885/42/3/001

S. Coleman. Fate of the false vacuum: Semiclassical theory. Phys. Rev. D 15, 2929 (1977); 16, 1762 (1977). https://doi.org/10.1103/PhysRevD.15.2929

G. Rybicki. Exact statistical mechanics of a one-dimensional self-gravitating system. Astrophys. Space Sci. 14, 56 (1971). https://doi.org/10.1007/BF00649195

K.R. Yawn, B.N. Miller. Incomplete relaxation in a two-mass one-dimensional self-gravitating system. Phys. Rev. E 68, 056120 (2003). https://doi.org/10.1103/PhysRevE.68.056120

R.Michie. On the distribution of high energy stars in spherical stellar systems. Not. R. Astron. Soc. 125, 127 (1962). https://doi.org/10.1093/mnras/125.2.127

W. Jaffe. A simple model for the distribution of light in spherical galaxies. Not. R. Astron. Soc. 202, 995 (1983). https://doi.org/10.1093/mnras/202.4.995

Y. Levin, R. Pakter, F.B. Rizzato, T.N. Teles, F.P.C. Benetti. Nonequilibrium statistical mechanics of systems with long-range interactions. Phys. Rep. 535, 1 (2014). https://doi.org/10.1016/j.physrep.2013.10.001

J.W. Cahn. On spinodal decomposition. Acta Metallurgica 9, 795 (1988). https://doi.org/10.1016/0001-6160(61)90182-1

C.W. Gardiner, P. Zoller. Quantum Noise (Springer, 2000) [ISBN: 978-3-540-22301-6]. https://doi.org/10.1007/978-3-662-04103-1

R. Balescu. Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, 1978).

J.W. Gibbs. Elementary Principles in Statistical Mechanics, Developed with Especial Reference to the Rational Foundation of Thermodynamics (Scribner's Sons, 1902). https://doi.org/10.5962/bhl.title.32624

L.D. Landau, E.M. Lifshitz. Statistical Physics (Pergamon, 1978).

D.F. Wells, G.J. Milburn. Quantum Optics (Springer, 2001).

P. Colet, F. De Pasquele, M. San Miguel. Relaxation in the subcritical pitchfork bifurcation: From critical to Gaussian scaling. Phys. Rev. A 43, 5296 (1991). https://doi.org/10.1103/PhysRevA.43.5296

F.D.M. Haldane. "Fractional statistics" in arbitrary dimensions: A generalization of the Pauli principle. Phys. Rev. Lett. 67, 937 (1991). https://doi.org/10.1103/PhysRevLett.67.937

N.G. van Kampen. Stochastic Processes in Physics and Chemistry (North-Holland, 1990).

W. Horsthemke, R. Lefever. Noise-Induced Phase Transitions. Theory, Applications in Physics, Chemistry and Biology (Springer, 1984).

A. Albrecht, P.J. Steinhard. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220 (1982). https://doi.org/10.1103/PhysRevLett.48.1220

B.I. Lev, H. Yokoyama. Selection of states and fluctuation under the first order phase transitions. Int. J. Mod. Phys. B 17, 4913 (2003). https://doi.org/10.1142/S021797920302274X

Опубліковано

2020-12-18

Як цитувати

Lev, B., & Zagorodny, A. (2020). Статистичне описання нерівноважних багаточастинкових систем. Український фізичний журнал, 65(12), 1056. https://doi.org/10.15407/ujpe65.12.1056

Номер

Розділ

Загальна фізика