Пошуки критичної точки КХД з флуктуацією числа протонів

Автор(и)

  • M. Szymański Institute of Theoretical Physics, University of Wroclaw
  • M. Bluhm Institute of Theoretical Physics, University of Wroclaw, SUBATECH UMR 6457 (IMT Atlantique, Universit´e de Nantes, IN2P3/CNRS), Extreme Matter Institute EMMI, GSI
  • K. Redlich Institute of Theoretical Physics, University of Wroclaw, Extreme Matter Institute EMMI, GSI
  • C. Sasaki Institute of Theoretical Physics, University of Wroclaw

DOI:

https://doi.org/10.15407/ujpe64.8.766

Ключові слова:

net-proton number fluctuations, QCD critical point, heavy-ion collisions

Анотація

Флуктуацiї повного числа протонiв можна вимiрювати експериментально, отримуючи таким чином важливу iнформацiю про речовину, що народжується пiд час зiткнень релятивiстських iонiв. Зокрема вона може мiстити iнформацiю про критичну точку КХД. В данiй роботi ми обговорюємо залежнiсть вiдношень перших чотирьох кумулянтiв числа протонiв вiд енергiї струменя частинок. Цi величини розрахованi за допомогою феноменологiчної моделi, в якiй флуктуацiї з критичною модою пов’язанi з протонами та антипротонами. Наша модель якiсно вiдтворює як монотонну поведiнку вiдношення найнижчих порядкiв, так i немонотонну поведiнку вiдношень високих порядкiв, як це спостерiгається в результатах колаборацiї STAR. Ми обговорюємо також залежнiсть наших результатiв вiд сили зв’язку i мiсцезнаходження критичної точки.

Посилання

M.A. Stephanov, K. Rajagopal, E.V. Shuryak. Signatures of the tricritical point in QCD. Phys. Rev. Lett. 81, 4816 (1998). https://doi.org/10.1103/PhysRevLett.81.4816

M.A. Stephanov, K. Rajagopal, E.V. Shuryak. Event-by-event fluctuations in heavy ion collisions and the QCD critical point. Phys. Rev. D 60, 114028 (1999). https://doi.org/10.1103/PhysRevD.60.114028

X. Luo, [STAR Collaboration]. Energy dependence of moments of net-proton and net-charge multiplicity distributions at STAR. PoS CPOD 2014, 019 (2015). https://doi.org/10.22323/1.217.0019

X. Luo. Exploring the QCD phase structure with beam energy scan in heavy-ion collisions. Nucl. Phys. A 956, 75 (2016). https://doi.org/10.1016/j.nuclphysa.2016.03.025

J. Th?ader [STAR Collaboration]. Higher moments of net-particle multiplicity distributions. Nucl. Phys. A 956, 320 (2016). https://doi.org/10.1016/j.nuclphysa.2016.02.047

G.A. Almasi, B. Friman, K. Redlich. Baryon number fluctuations in chiral effective models and their phenomeno-logical implications. Phys. Rev. D 96, 014027 (2017). https://doi.org/10.1103/PhysRevD.96.014027

F. Karsch. Lattice QCD results on cumulant ratios at freeze-out. J. Phys. Conf. Ser. 779, 012015 (2017). https://doi.org/10.1088/1742-6596/779/1/012015

A.Bzdak,V.Koch.Net-baryonmultiplicity distribution consistentwith latticeQCD.Phys.Rev.C99, 024913 (2019). https://doi.org/10.1103/PhysRevC.99.024913

V. Koch, A. Bzdak. Fluctuations and the QCD phase diagram. Acta Phys. Polon. B 47, 1867 (2016). https://doi.org/10.5506/APhysPolB.47.1867

M. Bluhm, M. Nahrgang, S.A. Bass, T. Sch?afer. Impact of resonance decays on critical point signals in net-proton fluctuations. Eur. Phys. J. C 77, 210 (2017). https://doi.org/10.1140/epjc/s10052-017-4771-3

M. Szyma?nski, M. Bluhm, K. Redlich, C. Sasaki. Netproton number fluctuations in the presence of the QCD critical point. arXiv:1905.00667 [nucl-th].

C. Sasaki, B. Friman, K. Redlich. Quark number fluctuations in a chiral model at finite baryon chemical potential. Phys. Rev. D 75, 054026 (2007). https://doi.org/10.1103/PhysRevD.75.054026

C. Sasaki, B. Friman, K. Redlich. Chiral phase transition in the presence of spinodal decomposition. Phys. Rev. D 77, 034024 (2008). https://doi.org/10.1103/PhysRevD.77.034024

J. Zinn-Justin. Quantum Field Theory and Critical Phenomena (Clarendon Press, 2002). https://doi.org/10.1093/acprof:oso/9780198509233.001.0001

A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel. Decoding the phase structure of QCD via particle production at high energy. Nature 561, 321 (2018). https://doi.org/10.1038/s41586-018-0491-6

F. Wilczek. Application of the renormalization group to a second-order QCD phase transition. Int. J. Mod. Phys. A 07, 3911 (1992). https://doi.org/10.1142/S0217751X92001757

A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, J.J.M. Verbaarschot. Phase diagram of QCD. Phys. Rev. D 58, 096007 (1998). https://doi.org/10.1103/PhysRevD.58.096007

H.-T. Ding, F. Karsch, S. Mukherjee. Thermodynamics of strong-interaction matter from Lattice QCD. Int. J. Mod. Phys. E 24, 1530007 (2015). https://doi.org/10.1142/S0218301315300076

Y. Hatta, T. Ikeda. Universality, the QCD critical/tricritical point and the quark number susceptibility. Phys. Rev. D 67, 014028 (2003). https://doi.org/10.1103/PhysRevD.67.014028

S. Mukherjee, R. Venugopalan, Y. Yin. Real time evolution of non-Gaussian cumulants in the QCD critical regime. Phys. Rev. C 92, 034912 (2015). https://doi.org/10.1103/PhysRevC.92.034912

C. Nonaka, M. Asakawa. Hydrodynamical evolution near the QCD critical end point.Phys.Rev.C71, 044904 (2005). https://doi.org/10.1103/PhysRevC.71.044904

R. Guida, J. Zinn-Justin. 3-D Ising model: The scaling equation of state. Nucl. Phys. B 489, 626 (1997). https://doi.org/10.1016/S0550-3213(96)00704-3

B. Abelev et al., [ALICE Collaboration]. Centrality dependence of п, K, p production in Pb-Pb collisions at vSNN = 2.76 TeV. Phys. Rev. C 88, 044910 (2013).

B.B. Abelev et al., [ALICE Collaboration]. K0S and ? production in Pb-Pb collisions at vSNN = 2.76 TeV. Phys. Rev. Lett. 111, 222301 (2013).

B.B. Abelev et al., [ALICE Collaboration]. Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at vSNN = 2.76 TeV. Phys. Lett. B 728, 216 (2014), Erratum: [Phys. Lett. B 734, 409 (2014)]. https://doi.org/10.1016/j.physletb.2014.05.052

B.B. Abelev et al., [ALICE Collaboration]. K*(892)0 and ffl(1020) production in Pb-Pb collisions at vSNN = 2.76 TeV. Phys. Rev. C 91, 024609 (2015).

J. Adam et al., [ALICE Collaboration]. 3?H and 3?H production in Pb-Pb collisions at vSNN = 2.76 TeV. Phys. Lett. B 754, 360 (2016).

J. Adam et al., [ALICE Collaboration]. Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN large hadron collider. Phys. Rev. C 93, 024917 (2016). https://doi.org/10.1103/PhysRevC.93.044907

Downloads

Опубліковано

2019-09-18

Як цитувати

Szymański, M., Bluhm, M., Redlich, K., & Sasaki, C. (2019). Пошуки критичної точки КХД з флуктуацією числа протонів. Український фізичний журнал, 64(8), 766. https://doi.org/10.15407/ujpe64.8.766

Номер

Розділ

Спеціальний випуск