Дослідження парамагнітних координаційних сполук лантаноїдів складу [LnL3 • Phen] (L = CCl3C(O)NP(O)(OCH3)2) методом ЯМР-спектроскопії на ядрах 1H та 31P

Автор(и)

  • V. A. Trush Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Chair of Inorganic Chemistry
  • O. O. Litsis Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Chair of Inorganic Chemistry
  • T. Yu. Sliva Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Chair of Inorganic Chemistry
  • Ya. O. Gumenyuk National University of Life and Environmental Sciences of Ukraine, Education and Research Institute of Energetics, Automation, and Energy Efficiency, Chair of Physics
  • V. M. Amirkhanov Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Chair of Inorganic Chemistry

DOI:

https://doi.org/10.15407/ujpe64.9.855

Ключові слова:

координацiйнi сполуки лантаноїдiв, карбациламiдофосфати, ЯМР-спектроскопiя, iзотропний хiмiчний зсув

Анотація

Cинтезовано ряд координацiйних сполук лантаноїдiв з диметил-N-трихлорацетиламiдофосфатом HL (HL=CCl3C(O)N(H)P(O)(OCH3)2, лiгандом карбациламiдофосфатного (CAPh) типу) складу [LnL3 · Phen], де Phen – 1,10 фенантролiн, Ln = La, Ce, Pr, Nd, Sm, Tb, Dy, Ho, Er. Розчини лiганду HL та синтезованих на його основi комплексiв в ацетонi дослiдженi методом ЯМР 1H та 31P при кiмнатнiй температурi 298 К. Оскiльки хiмiчнi зсуви сигналiв 1H мають псевдоконтактну природу, то iзотропнi зсуви сигналiв 31Р вдалося розкласти на контактну та псевдоконтактну складовi. Було встановлено iснування у розчинi сполук [LnL3 · Phen] двох серiй комплексiв, що мають однакову будову координацiйної сфери в межах кожної серiї: Ln=Ce, Pr, Nd, Sm (L1) та Ln=Tb, Dy, Ho, Er (L2). Для цих комплексiв було розраховано значення константи надтонкої взаємодiї: 0,18 МГц (L1) та 0,13 МГц (L2).

Посилання

A.J. Roche, S.A. Rabinowitz, K.A. Cox. Efficient NMR enantiodiscrimination of bridge fluorinated paracyclophanes using lanthanide tris beta-diketonate complexes. Tetrahedron: Asymmetr. 24, 1382 (2013). https://doi.org/10.1016/j.tetasy.2013.09.024

S. Spiliadis, A.A. Pinkerton. Paramagnetic nuclear magnetic resonance study of the lanthanide complexes [Ln(SPR)3]; R=OMe, OiPr. Determination of phosphorus hyperfine coupling and solution structures. Inorg. Chim. Acta. 75, 125 (1983). https://doi.org/10.1016/S0020-1693(00)91198-8

A.V. Turov, S.P. Bondarenko, A.A. Tkachuk, V.P. Khilya. Study of the conformational mobility of substituted 2-methoxychalcones under the influence of lanthanide shift reagents. Zh. Org. Khim. 41, 51 (2005) (in Russian). https://doi.org/10.1007/s11178-005-0118-x

V.F. Zolin, L.G. Koreneva. Rare-Earth Probe in Chemistry and Biology (Nauka, Moscow, 1980) (in Russian).

M. Woods, D.E. Woessnerc, A.Dean Sherry. Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. Chem. Soc. Rev. 35, 500 (2006). https://doi.org/10.1039/b509907m

M.D. Organ, R.C. Brasch. Contrast enhancing agents in NMR imaging. Annu. Rep. Med. Chem. 20, 277 (1985). https://doi.org/10.1016/S0065-7743(08)61054-4

J.A. Peters, M.S. Nieuwenhuizen, A.P.G. Kieboom, D.J. Raber. Analysis of multinuclear lanthanide induced shifts. Part 5′. The coordination polyhedron of 1 : 3 lanthanide(III)-glycolate complexes in aqueous solution. J. Chem. Soc. Dalton Trans. 3, 717 (1988). https://doi.org/10.1039/DT9880000717

V.V. Skopenko, V.M. Amirkhanov, T.Yu. Sliva, I.S. Vasilchenko, E.L. Anpilova, A.D. Garnovskii. Various types of metal complexes based on chelating B-diketones and their structural analogues. Russ. Chem. Rev. 8, 737 (2004). https://doi.org/10.1070/RC2004v073n08ABEH000909

V.M. Amirkhanov, V.A. Ovchynnikov, V.A. Trush, P. Gawryszewska, L.B. Jerzykiewicz. Powerful new ligand systems: Carbacylamidophosphates (Caph) and sulfonylamidophosphates (Saph). In Ligands. Synthesis, Characterization and Role in Biotechnology (NOVA Publishers, 2014) [ISBN: 978-1631171437].

O.O. Litsis, I.O. Shatrava, V.M. Amirkhanov, V.A. Ovchynnikov, T.Yu. Sliva, S.V. Shishkina, V.V. Dyakonenko, O.V. Shishkin, V.M. Amirkhanov. New carbacylamidophosphates (CAPh) and CAPh-containing coordination compounds: structural peculiarities. Struct. Chem. 27, 341 (2016). https://doi.org/10.1007/s11224-015-0701-x

N.S. Kariaka, J.A. Rusanova, S.S. Smola, S.V. Kolotilov, K.O. Znovjyak, M. Weselski, T.Yu. Sliva, V.M. Amirkhanov. First examples of carbacylamidophosphate pentanuclear hydroxo-complexes: Synthesis, structure, luminescence and magnetic properties. Polyhedron. 106, 44 (2016). https://doi.org/10.1016/j.poly.2015.12.052

O. Litsis, V. Ovchynnikov, T. Sliva, S. Shishkina, V. Amirkhanov. Lanthanide coordination compounds with monodentate coordinated B-diketone heteroanalogue-(2,2,2-trichloro-N-(dipiperidin-1-yl-phosphoryl)acetamide: synthesis and spectral investigations. Chem. J. Moldova 13, 15 (2018). https://doi.org/10.19261/cjm.2017.466

V. Amirkhanov, A. Rauf, T.B. Hadda, V. Ovchynnikov, V. Trush, M. Saleem, M. Raza, T. Rehman, H. Zgou, U. Shaheen, T. Farghaly. Pharmacophores modeling in terms of prediction of theoretical physico-chemical properties and verification by experimental correlations of carbacylamidophosphates (CAPh) and sulfanylamidophosphates (SAPh) tested as new carbonic anhydrase inhibitors. Mini-Rev. Med. Chem. 19, 20 (2019). https://doi.org/10.2174/1389557519666190222172757

I.I. Grynyuk, S.V. Prylutska, N.S. Kariaka, T.Yu. Sliva, O.V. Moroz, D.V. Franskevych, V.M. Amirkhanov, O.P. Matyshevska, M.S. Slobodyanik. Computer prediction of biological activity of dimethyl-n-(benzoyl)amidophosphate and dimethyl-n-(phenylsulfonyl)amidophosphate, evaluation of their Cytotoxic activity against leukemia cells invitro. Ukr. Biochem. J. 87, 154 (2015). https://doi.org/10.15407/ubj87.06.154

Iu. Shatrava, V. Ovchynnikov, K. Gubina, S. Shishkina, O. Shishkin, V. Amirkhanov. Varieties in structures of Co(II), Ni(II) and Cu(II) coordination compounds based on dimethyl pyridine-2-ylcarbamoylphosphoramidate. Struct. Chem. 27, 1413 (2016). https://doi.org/10.1007/s11224-016-0761-6

S.J. Lyle, Md.M. Rahman. Complexometic titration of yttrium and lanthanoids. Talanta 10, 1177 (1963). https://doi.org/10.1016/0039-9140(63)80170-8

V.M. Amirkhanov, V.A. Trush. Properties and structure of dimethyl ester of trichloroacetyl-amidophosphoric acid. Zh. Org. Khim. 7, 1120 (1995) (in Russian).

J. Cybin'ska, J. Legendziewicz, V. Trush, R. Reisfeld, T. Saraidarov. The orange emission of single crystals and solgels based on Sm3+ chelates. J. Alloy. Compd. 451, 94 (2008). https://doi.org/10.1016/j.jallcom.2007.04.088

M. Puchalska, I. Turowska-Tyrk, V. Trush, J. Legendziewicz. Structural characteristic and luminescence properties of first known example of a pair of europium(III) complexes of phosphoroazo-derivative of B-diketone with inner and both inner and outer sphere 2,2′-bipyridine. J. Alloy. Compd. 451, 264 (2008). https://doi.org/10.1016/j.jallcom.2007.04.183

V. A. Trush, O.O. Litsis, T.Yu. Sliva, V.M. Amirkhanov. Heteroleptic lanthanide complexes with the CAPh-type ligand dimethyl-N-trichloracetylamidophosphate. Visn. Odes. Nats. Univ. Khim. 22, 62 (2017). https://doi.org/10.18524/2304-0947.2017.2(62).102214

G. Oczko, J. Legendziewicz, V. Trush, V. Amirkhanov. X-ray analysis and excited state dynamics in a new class of lanthanide mixed chelates of the type LnPhB3·Phen(Ln = Sm, Eu, Gd, Tb). New J. Chem. 27, 948 (2003). https://doi.org/10.1039/B211044J

J. Reuben, D. Fiat. Nuclear magnetic resonance studies of solutions of the rare earth ions and their complexes. J. Chem. Phys. 51, 4909 (1969). https://doi.org/10.1063/1.1671883

K.A. Gschneidner, J.-C.G. Bunzli, V.K. Pecharsky. Handbook on the Physics and Chemistry of Rare Earths, (Elsevier, 2003) [ISBN: 978-0-444-51323-6].

A.M. Funk, K.-L.N. A. Finney, P. Harvey, A.M. Kenwright, E.R. Neil, N.J. Rogers, P.K. Senanayake and D. Parker. Critical analysis of the limitations of Bleaney's theory of magnetic anisotropy in paramagnetic lanthanide coordination complexes. Chem. Sci. 6, 1655 (2015). https://doi.org/10.1039/C4SC03429E

B.B. Bleaney. Nuclear magnetic resonance shifts in solution due to lanthanide ions. J. Magn. Reson. 8, 91 (1972). https://doi.org/10.1016/0022-2364(72)90027-3

R.S. Drago, J.I. Zink, R.M. Richman, W.D. Perry. Theory of isotropic shifts in the NMR of paramagnetic materials: Part I. J. Chem. Educ. 51, 371 (1974). https://doi.org/10.1021/ed051p371

A.A. Pinkerton, W.L. Earl. A nuclear magnetic resonance investigation of bis(O,O′-diethyldithiophosphato)-complexes of the lanthanids: Separation of contact and pseudo-contact contributions to the chemical shifts. J. Chem. Soc. Dalton Trans. 3, 267 (1978). https://doi.org/10.1039/DT9780000267

L. Fusaro. An 17O NMR study of diamagnetic and paramagnetic lanthanide-tris(oxydiacetate) complexes in aqueous solution. Magn. Reson. Chem. 56, 1168 (2018). https://doi.org/10.1002/mrc.4781

K. Djanashvili, J.A. Peters. How to determine the number of inner-sphere water molecules in lanthanide(III) complexes by 17O NMR spectroscopy. A technical note. Contr. Media Mol. Imag. 2, 67 (2007). https://doi.org/10.1002/cmmi.132

Опубліковано

2019-10-11

Як цитувати

Trush, V. A., Litsis, O. O., Sliva, T. Y., Gumenyuk, Y. O., & Amirkhanov, V. M. (2019). Дослідження парамагнітних координаційних сполук лантаноїдів складу [LnL3 • Phen] (L = CCl3C(O)NP(O)(OCH3)2) методом ЯМР-спектроскопії на ядрах 1H та 31P. Український фізичний журнал, 64(9), 855. https://doi.org/10.15407/ujpe64.9.855

Номер

Розділ

Структура речовини