Influence of Sintering Time on the Microstructure and Electric Properties of Low-Voltage Zinc Oxide-Based Varistor Ceramics

Authors

  • A. Yu. Lyashkov Oles Gonchar National University of Dnipropetrovsk, Chair of Radioelectronics

DOI:

https://doi.org/10.15407/ujpe59.08.0787

Keywords:

ceramics, varistor, semiconductor, current-voltage characteristic, dielectric permittivity

Abstract

The results of experimental researches obtained for a varistor ceramics on the basis of zinc oxide are reported. The influence of the sintering time of the ceramics on its electric properties and microstructure is studied. The increase in the sintering time of ceramics is found to result in a broadening of the grain distribution spectrum over the grain size and in a shift of its maximum toward larger values. Specific features in the grain size distribution are revealed. It is found that, at the long-term sintering, the large grains form conductivity channels, with the barrier structure of the varistor ceramics being not destroyed, which gives rise to the growth of the real and imaginary components of the complex dielectric permittivity.

References

V.B. Kvaskov, Semiconductor Devices with Bipolar Conductivity (Energoatomizdat, Moscow, 1988) (in Russian).

W. Heywang, Amorphe und Polykristalline Halbleiter (Springer, Berlin, 1984).

https://doi.org/10.1007/978-3-642-95447-4

V.P. Cherepanov, A.K. Khrulev, and I.P. Bludov, Electronic Devices to Protect Electronic Facilities against Electric Overloads: A Handbook (Radio i Svyaz Moscow, 1994) (in Russian).

S.-T. Kuo and W.-H. Tuan, J. Eur. Ceram. Soc. 30, 525 (2010).

https://doi.org/10.1016/j.jeurceramsoc.2009.05.008

W.S. Lee, W.T. Chen, T. Yang, Y.C. Lee, S.P. Lin, C.Y. Su, and C.L. Hu, J. Eur. Ceram. Soc. 26, 3753 (2006).

https://doi.org/10.1016/j.jeurceramsoc.2005.12.027

W.S. Lee, W.T. Chen, Y.C. Lee, T. Yang, C.Y. Su, and C. L. Hu, Ceram. Intern. 33, 1001 (2007).

https://doi.org/10.1016/j.ceramint.2006.02.017

L. Wang, G. Tang, and Z.-K. Xu, Ceram. Intern. 35, 487 (2009).

https://doi.org/10.1016/j.ceramint.2008.01.011

M. Schloffer, C. Teichert, P. Supancic, A. Andreev, Y. Hou, and Z. Wang, J. Eur. Ceram. Soc. 30, 1761 (2010).

https://doi.org/10.1016/j.jeurceramsoc.2010.01.005

S. Li, F. Xie, F. Liu, J. Li, and M.A. Ali, Mater. Lett. 59, 302 (2005).

https://doi.org/10.1016/j.matlet.2004.10.008

H.O. Toplan and Y. Karakas, Ceram. Intern. 27, 761 (2001).

https://doi.org/10.1016/S0272-8842(01)00027-X

M.-H. Wang, K.-A. Hu, B.-Y. Zhao, and N.-F. Zhang, Mater. Chem. Phys. 100, 142 (2006).

https://doi.org/10.1016/j.matchemphys.2005.12.023

Q. Wang, Y. Qin, G.J. Xu, L. Chen, Y. Li, L. Duan, Z.X. Li, Y.L. Li, and P. Cui, Ceram. Intern. 34, 1697 (2008).

https://doi.org/10.1016/j.ceramint.2007.05.012

M.-h. Wang, Q.-h. Tang, and C. Yao, Ceram. Intern. 36, 1095 (2010).

https://doi.org/10.1016/j.ceramint.2009.12.006

C. Tsonos, A. Kanapitsas, D. Triantis, C. Anastasiadis, I. Stavrakas, P. Pissis, and E. Neagu, Ceram. Intern. 37, 207 (2011).

https://doi.org/10.1016/j.ceramint.2010.08.036

Y.Q. Huang, L. Meidong, Z. Yike, L. Churong X. Donglin, and L. Shaobo, Mater. Sci. Eng. B 86, 232, (2001).

https://doi.org/10.1016/S0921-5107(01)00688-2

M.-h. Wang, C. Yao, and N.-f. Zhang, J. Mater. Process. Techn. 202, 406 (2008).

https://doi.org/10.1016/j.jmatprotec.2007.09.033

N. Daneu, N.N. Gramc, A. Recnik, M.M. Krzmanc, and S. Bernik, J. Eur. Ceram. Soc. 33, 335 (2013).

https://doi.org/10.1016/j.jeurceramsoc.2012.08.023

V.B. Kvaskov and M.A. Chernysheva, Electrophysical Properties and Application of Metal Oxide Varistors (Informelektro, Moscow, 1985) (in Russian).

C.-W. Nahm, Ceram. Intern. 35, 2679 (2009).

https://doi.org/10.1016/j.ceramint.2009.03.011

C.-W. Nahm, Mater. Sci. Eng. B 133, 91 (2006).

https://doi.org/10.1016/j.mseb.2006.06.001

D. Xu, L. Shi, Z. Wu, Q. Zhong, and X. Wu, J. Eur. Ceram. Soc. 29, 1789 (2009).

https://doi.org/10.1016/j.jeurceramsoc.2008.10.020

D. Fernandez-Hevia, M. Peiteado, J. de Frutos, A.C. Caballero, and J.F. Fernandez, J. Eur. Ceram. Soc. 24, 1205 (2004).

https://doi.org/10.1016/S0955-2219(03)00411-4

Yu.M. Tairov and V.F. Tsvetkov, Technology of Semiconductor and Dielectric Materials (Lan', Moscow, 2002) (in Russian).

A.L. Khalaf Abdullah, M.D. Termanini, F. Alhaj Omar, Energy Procedia 19, 128 (2012).

https://doi.org/10.1016/j.egypro.2012.05.193

T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990).

https://doi.org/10.1111/j.1151-2916.1990.tb05232.x

Ya.E. Geguzin, Physics of Sintering (Nauka, Moscow, 1984) (in Russian).

Physico-Chemical Properties of Oxides: A Handbook, edited by G.V. Samsonova (Metallurgiya, Moscow, 1978) (in Russian).

K. Okazaki, Ceramic Engineering for Dielectrics (Gakkensha, Tokyo, 1983).

R. Einzinger, Annu. Rev. Mater. Sci. 17, 299 (1987).

https://doi.org/10.1146/annurev.ms.17.080187.001503

C.-W. Nahm, Mater. Sci. in Semicond. Process. 16, 778 (2013).

https://doi.org/10.1016/j.mssp.2012.12.026

D. Xu, X. Cheng, H. Yuan, J. Yang, and Y. Lin, J. Alloys Comp. 509, 9312 (2011).

A.S. Tonkoshkur, Ukr. Fiz. Zh. 23, 2030 (1978).

Kh.S. Valeev and V.B Kvaskov, Nonlinear Metal-Oxide Semiconductors (Energoizdat, Moscow, 1983) (in Russian).

G.I. Epifanov and Yu.A. Moma, Solid State Electronics (Vysshaya Shkola, Moscow, 1986) (in Russian).

I.V. Gomilko and A.S. Tonkoshkur, Visn. Dnipropetrovsk. Univ. Ser. Fiz. Radioelektron. 3, N 2, 15 (1998).

I.A. Myasnikov, V.Ya. Sukharev, L.Yu. Kupriyanov, and S.A. Zav'yalov, Semiconductor Sensors in PhysicoChemical Researches (Nauka, Moscow, 1991) (in Russian).

Published

2018-10-24

How to Cite

Lyashkov, A. Y. (2018). Influence of Sintering Time on the Microstructure and Electric Properties of Low-Voltage Zinc Oxide-Based Varistor Ceramics. Ukrainian Journal of Physics, 59(8), 787. https://doi.org/10.15407/ujpe59.08.0787

Issue

Section

Solid matter

Most read articles by the same author(s)