Study of Atomic Populations, Electromagnetically Induced Transparency, and Dispersive Signals in a λ-Type System Under Various Decoherence Effects

Authors

  • R. Hazra Department of Physics, Aliah University
  • Md.M. Hossain Department of Physics, Aliah University

DOI:

https://doi.org/10.15407/ujpe64.3.197

Keywords:

electromagnetically induced transparency, dispersion, decoherence, density matrix, lambda-type system

Abstract

We have theoretically studied the atomic populations, electromagnetically induced transparency (EIT), and dispersion in a three-level Λ-type system. The density matrix equations are set up with regard for the relaxation of populations of the ground states, and the optical Bloch equations are solved analytically in the weak probe field approximation. Decoherence effects in the ground and excited states on the EIT line shape and dispersive signals are studied, and it is found that the EIT line width increases and the peak height decreases, as the decoherence rates increase in the ground and excited states. On the other hand, we have observed that the dispersive signals are steeper and of high contrast for the lower decoherence rates in the ground and excited states. We have also analyzed the variations of atomic populations of the energy levels at the pump Rabi frequency, as well as the decoherence rate in the ground state.

References

M.O. Scully, M.S. Zubairy. Quantum Optics (Cambridge Univ. Press, 1999).

S.E. Harris. Electromagnetically induced transparency. Phys. Today 50 (7), 36 (1997). https://doi.org/10.1063/1.881806

J.P. Marangos. Topical review electromagnetically induced transparency. J. Mod. Opt. 45, 471 (1998). https://doi.org/10.1080/09500349808231909

M. Fleischhauer, A. Imamoglu, J.P. Marangos. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633 (2005). https://doi.org/10.1103/RevModPhys.77.633

A.M. Akulshin, S. Barreiro, A. Lezama. Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor. Phys. Rev. A 57, 2996 (1998). https://doi.org/10.1103/PhysRevA.57.2996

A. Lipsich, S. Barreiro, A.M. Akulshin, A. Lezama. Absorption spectra of driven degenerate two-level atomic systems. Phys. Rev. A 61, 053803 (2000). https://doi.org/10.1103/PhysRevA.61.053803

A.V. Taichenachev, A.M. Tumaikin, V.I. Yudin. Electromagnetically induced absorption in a four-state system. Phys. Rev. A 61, 011802 (2000). https://doi.org/10.1103/PhysRevA.61.011802

M. Kwon, K. Kim, H.S. Moon, H.D. Park, J.B. Kim. Electromagnetically induced absorption spectra depending on intensities and detunings of the coupling field in Cs vapour. J. Phys. B 34, 2951 (2001). https://doi.org/10.1088/0953-4075/34/15/302

J. Kitching, S. Knappe, L. Hollberg. Miniature vapor-cell atomic-frequency references. Appl. Phys. Lett. 81, 553 (2002). https://doi.org/10.1063/1.1494115

A.H. Safavi-Naeini, T.P.M. Alegre, J. Chan, M. Eichenfield, M.Winger, Q. Lin, J.T. Hill, D.E. Chang, O. Painter. Electromagnetically induced transparency and slow light with optomechanics. Nature. 472, 69 (2011). https://doi.org/10.1038/nature09933

P.W. Milonni. Fast Light, Slow Light and Left Handed Light (Taylor and Francis Group, 2005).

M. Fleischhauer, M.D. Lukin. Dark-State polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094 (2000). https://doi.org/10.1103/PhysRevLett.84.5094

L.M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001). https://doi.org/10.1038/35106500

H. Lee, M. Fleischhauer, M.O. Scully. Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence. Phys. Rev. A 58, 2587 (1998). https://doi.org/10.1103/PhysRevA.58.2587

M.M. Hossain, S. Mitra, B. Ray, P.N. Ghosh. High contrast electromagnetically induced transparency in a nitrogen filled Rb vapour cell. Laser Phys. 19, 2008 (2009). https://doi.org/10.1134/S1054660X09190104

A. Javan, O. Kocharovskaya, H. Lee, M.O. Scully. Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium. Phys. Rev. A 66, 013805 (2002). https://doi.org/10.1103/PhysRevA.66.013805

H. Lee, Y. Rostovtsev, C.J. Bednar, A. Javan. From laser-induced line narrowing to electromagnetically induced transparency: Closed system analysis. Appl. Phys. B 76, 33 (2003). https://doi.org/10.1007/s00340-002-1030-5

Z. Lian-shui, Y. Li-jun, L. Xiao-li, Z. Zhong-hong, G. Qinglin. Spectral line narrowing effect induced by atomic coherence in a three-level ? system. Optoelectron. Lett. 3, 5 (2007).

S. Mitra, M.M. Hossain, B. Ray, P.N. Ghosh, S. Cartaleva, D. Slavov. On line shape of electromagnetically induced transparency in a multilevel system. Opt. Commun. 283, 1500 (2010). https://doi.org/10.1016/j.optcom.2009.11.088

Z.F. Hu, C.G. Du, Y.Z. Wang. Buffer-gas-induced narrowing of electromagnetically induced transparent spectra for an open system. J. Mod. Opt. 53, 4 (2006). https://doi.org/10.1080/01411590500420873

E.E. Mikhailov, I. Novikova, Y.V. Rostovtsev, G.R. Welch. Buffer-gas-induced absorption resonances in Rb vapor. Phys. Rev. A 70, 033806 (2004). https://doi.org/10.1103/PhysRevA.70.033806

E.E. Mikhailov, V.A. Sautenkov, Y.V. Rostovtsev, G.R. Welch. Absorption resonance and large negative delay in rubidium vapor with a buffer gas. J. Opt. Soc. Am. B 21, 2 (2004). https://doi.org/10.1364/JOSAB.21.000425

M. Erhard, H. Helm. Buffer-gas effects on dark resonances: Theory and experiment. Phys. Rev. A 63, 043813 (2001). https://doi.org/10.1103/PhysRevA.63.043813

G. Rui-Min, X. Feng, L. Cheng, Z. Yu, C. Xu-Zong. Dependence of electromagnetically induced transparency on laser linewidth. Chin. Phys. Lett. 20, 9 (2003). https://doi.org/10.1088/0256-307X/20/9/328

E. Figueroa, F. Vewinger, J. Appel, A.I. Lvovsky. Decoherence of electromagnetically induced transparency in atomic vapor. Opt. Lett. 31, 17 (2006). https://doi.org/10.1364/OL.31.002625

J. Wang. Decoherence effects in an electromagnetically induced transparency and slow light experiment. Phys. Rev. A 81, 033841 (2010). https://doi.org/10.1103/PhysRevA.81.033841

J. Ghosh, R. Ghosh, F. Goldfarb, J.-L. L. Gouet, F. Bretenaker. Analysis of electromagnetically induced transparency and slow light in a hot vapor of atoms undergoing collisions. Phys. Rev. A 80, 023817 (2009). https://doi.org/10.1103/PhysRevA.80.023817

J. Vanier, A. Godone, F. Levi. Coherent population trapping in cesium: Dark lines and coherent microwave emission. Phys. Rev. A 58, 2345 (1998). https://doi.org/10.1103/PhysRevA.58.2345

V. Wong, R.W. Boyd, C.R. Stroud, jr., R.S. Bennink, A.M. Marino. Thirteen pump-probe resonances of the sodium D1 line. Phys. Rev. A 68, 012502 (2003). https://doi.org/10.1103/PhysRevA.68.012502

O. Katz, O. Peleg, O. Firstenberg. Coherent coupling of alkali atoms by random collisions. Phys. Rev. Lett. 115, 113003 (2015). https://doi.org/10.1103/PhysRevLett.115.113003

H. Gao, M. Rosenbery, J. Wang, H. Batelaan. Experimental studies of light propagation and storage in warm atomic gases. J. Phys. B 38, 1857 (2005). https://doi.org/10.1088/0953-4075/38/12/003

G. Kazakov, B. Matisov, A. Litvinov, I. Mazets. Coherent population trapping in a finite-size buffer-less cell. J. Phys. B 40, 3852 (2007).

Y. Pashayan-Leroy, C. Leroy, A. Sargsyan, A. Papoyan, D. Sarkisyan. Electromagnetically induced transparency: the thickness of the vapor column is of the order of a light wavelength. J. Opt. Soc. Am. B 24, 1829 (2007). https://doi.org/10.1364/JOSAB.24.001829

A. V. Taichenachev, V. I. Yudin, R. Wynands, M. Stahler, J. Kitching, L. Hollberg. Theory of dark resonances for alkali-metal vapors in a buffer-gas cell. Phys. Rev. A 67, 033810 (2003). https://doi.org/10.1103/PhysRevA.67.033810

A.I. Parkhomenko, A.M. Shalagin. Ground-state pump-probe spectroscopy. J. Exp. Theor. Phys. 105, 1095 (2007). https://doi.org/10.1134/S1063776107120011

Stephen Colby Rand, Lectures on Light: Nonlinear and Quantum Optics using the Density Matrix (Oxford Univ. Press, 2010).

L. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature. 397, 594 (1999). https://doi.org/10.1038/17561

S.E. Harris, J.E. Field, A. Imamoglu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990). https://doi.org/10.1103/PhysRevLett.64.1107

S.E. Harris, J.E. Field, A. Kasapi. Dispersive properties of electromagnetically induced transparency. Phys. Rev. A 46, 29 (1992). https://doi.org/10.1103/PhysRevA.46.R29

Downloads

Published

2019-04-01

How to Cite

Hazra, R., & Hossain, M. (2019). Study of Atomic Populations, Electromagnetically Induced Transparency, and Dispersive Signals in a λ-Type System Under Various Decoherence Effects. Ukrainian Journal of Physics, 64(3), 197. https://doi.org/10.15407/ujpe64.3.197

Issue

Section

Optics, atoms and molecules