Фотореакції макроциклічних сполук на поверхні вюрциту (1010) – взаємовплив конформації та електронних ефектів

Автор(и)

  • V. V. Golovanova Center for Innovation Technologies, South-Ukrainian National University
  • B. V. Nazarchuk Center for Innovation Technologies, South-Ukrainian National University
  • O. V. Postnyi Center for Innovation Technologies, South-Ukrainian National University
  • T. T. Rantala Department of Physics, Tampere University of Technology
  • N. V. Tkachenko Laboratory of Chemistry and Bioengineering, Tampere University of Technology
  • V. V. Golovanov Center for Innovation Technologies, South-Ukrainian National University

DOI:

https://doi.org/10.15407/ujpe64.1.63

Ключові слова:

macrocyclic dyes, wurzite, electron transfer, DFT

Анотація

Макроциклiчнi сполуки, такi як фталоцiанiн та порфiрин було змодельовано за допомогою методiв функцiонала електронної густини та молекулярної динамiки на поверхнi вюрциту (1010). Було виявлено, що окрема молекула на поверхнi вюрциту стабiлiзується у нахиленому станi пiд кутом 60∘ мiж ї ї кiльцем та поверхнею. Нахил молекули вiдносно поверхнi кристала двояко впливає на перенос заряду з хромофора до напiвпровiдника. Збiльшення кута нахилу призводить до бiльш сильної взаємодiї мiж нижчим рiвнем зони провiдностi напiвпровiдника та LUMO молекули, таким чином пiдвищуючи ймовiрнiсть тунелювання електрона та його iнжекцiї. З iншого боку, при нахилi макроциклу зростає електростатична взаємодiя мiж молекулою та поверхнею кристала, що призводить до зниження LUMO молекули по вiдношенню до мiнiмуму зони провiдностi вюрциту, що, в свою чергу, може перешкоджати переносу електрона. Тип лiнкера та периферiйнi групи можуть значно впливати на взаємне розташування фрагментiв системи, та їх правильний вибiр може сприяти фотоiндукованим реакцiям переносу заряду.

Посилання

P. Docampo, S. Guldin, T. Leijtens, N. Noel, U. Steiner, H. Snaith. Lessons learned: From dye-sensitized solar cells to all-solid-state hybrid devices. Adv. Mat. 26, 4013 (2014). https://doi.org/10.1002/adma.201400486

N. Kaura, M. Singh, D. Pathak, T. Wagner, J. Nunzid. Organic materials for photovoltaic applications: Review and mechanism. Synthetic Metals 190, 20 (2014). https://doi.org/10.1016/j.synthmet.2014.01.022

V. Golovanov, V. Smyntyna, G. Mattogno, S. Kasiulis, V. Lantto. Oxygen interaction of CdS-based gas sensors with different stoichiometric composition. Sensors and Actuators B 26–27, 108 (1995).

S. Dag, S. Wang, L. Wang. Large surface dipole moments in ZnO nanorods. Nano Letters 11, 2348 (2011). https://doi.org/10.1021/nl200647e

S. V. Kilina, D.S. Kilin, O.V. Prezhdo. Breaking the phonon bottleneck in PbSe and CdSe quantum dots: Time-domain density functional theory of charge carrier relaxation. ACS Nano 3 (1), 93 (2009). https://doi.org/10.1021/nn800674n

J.M. Azpiroz, F. De Angelis. Ligand induced spectral changes in CdSe quantum dots. ACS Appl. Mater. Interfaces 7 (35), 19736 (2015). https://doi.org/10.1021/acsami.5b05418

K. Virkki, H. Hakola, M. Urbani, L. Tejerina, M. Ince, M. Diaz, T. Torres, V. Golovanova, V. Golovanov, N. Tkachenko. Photoinduced electron injection from zinc phthalo-cyanines into zinc oxide nanorods – Aggregation effects. J. Phys. Chem. C 121 (17), 9594 (2017). https://doi.org/10.1021/acs.jpcc.7b01562

V.V. Golovanov, B.V. Nazarchuk, V.V. Golovanova, N.V. Tkachenko, T.T. Rantala. Effects of orientation at the phthalocyanine–CdSe interface on the electron transfer characteristics. Phys. Chem. Chem. Phys. 19, 10511 (2017). https://doi.org/10.1039/C7CP00833C

M. Niskanen, M. Kuisma, O. Cramariuc, V. Golovanov, T. Hukka, N. Tkachenko, T.T. Rantala. Porphyrin adsorbed on the (10? 10) surface of the wurtzite structure of ZnO – conformation induced effects on the electron transfer characteristics. Phys. Chem. Chem. Phys. 15 (40), 17408 (2013). https://doi.org/10.1039/c3cp51685g

H. Matsuzaki, T. Murakami, N. Masaki, A. Furube, M. Kimura, S. Mori. Dye aggregation effect on interfacial electron-transfer dynamics in zinc phthalocyanine-sensitized solar cells. J. Phys. Chem. C 118, 17205 (2014). https://doi.org/10.1021/jp500798c

L. Tejerina, M. Martinez-Diaz, M. Nazeeruddin, T. Torres. The influence of substituent orientation on the photovoltaic performance of phthalocyanine-sensitized solar cells. Chem. – Eur. J. 22, 4369 (2016). https://doi.org/10.1002/chem.201600166

H. Imahori, S. Kang, H. Hayashi, M. Haruta, H. Kurata, S. Isoda, S. Canton, Y. Infahsaeng, A. Kathiravan, T. Pascher, P. Chabera, A. Yartsev, V. Sundstrom. Photoinduced charge carrier dynamics of Zn-porphyrin-TiO2 electrodes: The key role of charge recombination for solar cell performance. J. Phys. Chem. A 115, 3679 (2011). https://doi.org/10.1021/jp103747t

M. Griffith, M. James, G. Triani, P. Wagner, G. Wallace, D. Officer. Determining the orientation and molecular packing of organic dyes on a TiO2 surface using X-ray reflectometry. Langmuir 27, 12944 (2011). https://doi.org/10.1021/la202598c

S. Ye, A. Kathiravan, H. Hayashi, Y. Tong, Y. Infahsaeng, P. Chabera, T. Pascher, A. Yartsev, S. Isoda, H. Imahori, V. Sundstr?om. Role of adsorption structures of Zn-porphyrin on TiO2 in dye-sensitized solar cells studied by sum frequency generation vibrational spectroscopy and ultrafast spectroscopy. J. Phys. Chem. C 117, 6066 (2013). https://doi.org/10.1021/jp400336r

V. Golovanov, V. Golovanova, T.T. Rantala. Thermal desorption of molecular oxygen from SnO2 (110) surface: Insights from first-principles calculations. J. Chem. Phys. Solids 89, 15 (2016). https://doi.org/10.1016/j.jpcs.2015.10.010

V. Golovanov, T. Kortelainen, T.T. Rantala. Stability of siloxane couplers on pure and fluorine doped SnO2 (110) surface: a first principles study. Surf. Sci. 604 (19–20), 1784 (2010). https://doi.org/10.1016/j.susc.2010.07.006

N. Ozcan, T. Kortelainen, V. Golovanov, T.T. Rantala, J. Vaara. Electron spin resonance parameters of bulk oxygen vacancy in semiconducting tin dioxide. Phys. Rev. B 81 (23), 235202 (1–10) (2010).

Y. Siao, P. Liu, Y. Wu. Ab initio study of atomic hydrogen on ZnO surfaces. Appl. Phys. Expr. 4, 125601 (2011). https://doi.org/10.1143/APEX.4.125601

V. Smyntyna, V. Golovanov, S. Kasiulis, G. Mattogno, G. Righini. Influence of chemical composition on sensitivity and signal reproducibility of CdS sensors of oxygen. Sensors and Actuators B 24–25, 628 (1995). https://doi.org/10.1016/0925-4005(95)85138-0

M. Arvani, K. Virkki, F. Abou-Chahine, A. Efimov, N.V. Tkachenko, D. Lupo. Photoinduced hole transfer in QD–phthalocyanine hybrids. Phys. Chem. Chem. Phys. 18, 27414 (2016). https://doi.org/10.1039/C6CP04374G

N. Moreira, A. da Rosa, T. Frauenheim. Covalent functionalization of ZnO surfaces: a density functional tight binding study. Appl. Phys. Lett. 94, 193109 (2009). https://doi.org/10.1063/1.3132055

BAND2014, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.

J. Perdew, A. Ruzsinszky, G. Csonka, O. Vydrov, G. Scuseria, L. Constantin, X. Zhou, K. Burke. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 102, 039902 (2009). https://doi.org/10.1103/PhysRevLett.102.039902

M. Kuisma, J. Ojanen, J. Enkovaara, T.T. Rantala. Kohn-Sham potential with discontinuity for band gap materials. Phys. Rev. B 82, 115106 (2010). https://doi.org/10.1103/PhysRevB.82.115106

S. Grimme, J. Antony, S. Ehrlich, H. Krieg. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

O. Ermer. Bonding Forces (Springer, 1976).

S. Mayo, B. Olafson, W. Goddard. Dreiding: A generic forcefield. J. Phys. Chem. 94, 8897 (1990). https://doi.org/10.1021/j100389a010

J. Sukegawa, C. Schubert, X. Zhu, H. Tsuji, D. Guldi, E. Nakamura. Electron transfer through rigid organic molecular wires enhanced by electronic and electron–vibration coupling. Nature Chem. 6, 889 (2014). https://doi.org/10.1038/nchem.2026

B. Pelado, F. Abou-Chahine, J. Calbo, R. Caballero, P. Cruz, J. Junquera-Hernandez, E. Orti, N. Tkachenko, F. Langa. Role of the bridge in photoinduced electron transfer in porphyrin–fullerene dyads. Chem. Eur. J. 21, 1 (2015). https://doi.org/10.1002/chem.201406514

Downloads

Опубліковано

2019-01-30

Як цитувати

Golovanova, V. V., Nazarchuk, B. V., Postnyi, O. V., Rantala, T. T., Tkachenko, N. V., & Golovanov, V. V. (2019). Фотореакції макроциклічних сполук на поверхні вюрциту (1010) – взаємовплив конформації та електронних ефектів. Український фізичний журнал, 64(1), 63. https://doi.org/10.15407/ujpe64.1.63

Номер

Розділ

Фізика поверхні

Статті цього автора (авторів), які найбільше читають