Synthesis of Surface Structures during Laser-Stimulated Evaporation of a Copper Sulfate Solution in Distilled Water

Authors

  • I.I. Bondar Uzhgorod National University
  • V.V. Suran Uzhgorod National University
  • O.Y. Minya Uzhgorod National University
  • O.K. Shuaibov Uzhgorod National University
  • Yu.Yu. Bilak Uzhgorod National University
  • I.V. Shevera Uzhgorod National University
  • A.O. Malinina Uzhgorod National University
  • V.N. Krasilinets Institute of Electronic Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe68.2.138

Keywords:

laser-stimulated evaporation, yttrium-aluminum garnet laser radiation, aqueous solution of copper sulfate, films, ordered structure, transmission spectra

Abstract

The methodology, technique, and results of studies of the formation of films on the glass surface during the irradiation of water solutions of copper sulfate with the laser radiation are presented. We used the nanosecond radiation of an yttrium-aluminum garnet laser with the generation wavelength λ = 1 .06 μm. The studies used solutions with different concentrations of copper sulfate. The structure of the films obtained in this case is compared with the structure of the films obtained as a result of drying the solutions without exposure to a laser radiation. The resulting films have both ordered and disordered structures. The characteristic dimensions of the structural elements of the films are 0.5–2 μm. The transmission of films in the 300–1200 nm spectral region is studied. In general, the resulting films are transparent in this area. Their transmission practically does not depend on the wavelength, but is different for different concentrations of the solution of copper sulfate.

References

M.A. Zavyalova. Surface modification of silica glass by pulses of a picosecond laser. Computer Optics 40 (6), 863 (2016).

https://doi.org/10.18287/2412-6179-2016-40-6-863-870

I.A. Tokareva, B.I. Bayrakny. Nanostructured anodic oxide coatings on valve metalsпїЅchallenges and opportunities. Nanosystems, nanomaterials, nanotechnologies 15 (4), 713 (2017).

https://doi.org/10.15407/nnn.15.04.0713

V.F. Tarasenko, M.V. Erofeev, E.Kh. Baksht, A.G. Burachenko, M.A. Shuliepov, V.S. Ripenko. Impact of a diffuse discharge formed by runaway electrons on the anode. Electrophysical Research at High Exposure Intensities 2, 282 (2016).

S.I. Valyanskii, S.V. Vinogradov, M.A. Kononov, V.M. Kononov, S.F. Rastopov. Surface copper-carbon microstructures formation by means of magnetron sputtering a composite copper-carbon target. Appl. Phys. No. 1, 49 (2016).

D.M. Kroytoru, S.A. Silkin, N.N. Kazak, S.Kh. Ivashku, V.I. Petrenko, G.I. Poshtaru et al. Physicochemical and tribological properties of carbon-containing surface nanocomposites obtained by electrospark alloying. Electronic Processing of Materials 56 (6), 12 (2020).

https://doi.org/10.3103/S1068375521060077

P.P. Gorbyk, N.V. Kusyak, A.L. Petranovskaya, E.I. Oranskaya, N.V. Abramov, N.M. Opanashchuk. Synthesis and properties of magnetic nanostructures with carbonized surface. Chemistry, Physics and Surface Technology 9 (2), 176 (2018).

https://doi.org/10.15407/hftp09.02.176

A.O. Andrusovych, D.V. Hurin, I.N. Malaya. Analysis of methods for obtaining nanostructured dielectric films. J. Instrum. Technol. 3, 7 (2016).

O.K. Shuaibov, O.Y. Minya, M.P. Chuchman, A.O. Malinina, O.M. Malinin, V.V. Danilo, Z.T. Gomoki. Parameters of nanosecond overvoltage discharge plasma in a narrow air gap between the electrodes containing electrode material vapor. Ukr. J Phys. 63 (9), 790 (2018).

https://doi.org/10.15407/ujpe63.9.790

О. K. Shuaibov, A.Y. Minya, A.A. Malinina, A.N. Malinin, Z.T. Gomoki, V.V. Danylo, Yu.Yu. Bilak. Study of the formation conditions of aluminum oxide nanoparticles in an overstressed nanosecond discharge between aluminum electrodes in a mixture of nitrogen and oxygen. J. Metallic Material Research 3 (2), 37 (2020).

https://doi.org/10.30564/jmmr.v3i2.2441

O.O. Havryluk, O.Yu. Semchuk. Formation of periodic structures on the solid surface under laser irradiation. Ukr. J. Phys. 62 (1), 20 (2017).

https://doi.org/10.15407/ujpe62.01.0020

N.M. Bulgakova, R. Stoyan, A. Rosenfel'd. Laser-induced modification of transparent crystals and glasses. IEEE J. Quantum Electron. 11 (40), 966 (2010).

https://doi.org/10.1070/QE2010v040n11ABEH014445

I.N. Zavestovskaya. Laser nanostructuring of materials surfaces. IEEE J. Quantum Electron. 11 (40), 942 (2010).

https://doi.org/10.1070/QE2010v040n11ABEH014447

O.Yu. Semchuk, O.O. Gavrilyuk. Absorption and relaxation of the laser pulse energy in substance (review). Surface 9 (24), 118 (2017).

https://doi.org/10.15407/Surface.2017.09.118

Yu.V. Klunnikova, S.P. Malyukov, A.V. Sayenko, D.A. Sarychev, V.V. Kitaev. Obtaining iron-oxide films on sapphire substrates. Tech. Phys. Lett. 44, Iss. 12, 68 (2018).

https://doi.org/10.1134/S1063785018060214

O.Y. Minya, V.M. Krasilinets, O.K. Shuaibov, I.V. Shevera, Z.T. Homoki, M.M. Chavarga et al. Transmission spectra of copper, aluminum and chalcopyrite - based thin nanostructured films prepared by gas discharge technique. Scientific Herald of Uzhhorod University. Series "Physics" Iss. 46, 84 (2019).

https://doi.org/10.24144/2415-8038.2019.46.84-91

Downloads

Published

2023-04-20

How to Cite

Bondar, I., Suran, V., Minya, O., Shuaibov, O., Bilak, Y., Shevera, I., Malinina, A., & Krasilinets, V. (2023). Synthesis of Surface Structures during Laser-Stimulated Evaporation of a Copper Sulfate Solution in Distilled Water. Ukrainian Journal of Physics, 68(2), 138. https://doi.org/10.15407/ujpe68.2.138

Issue

Section

Surface physics