Superions in the Narrow Nanopores with Multiple Occupancy

Authors

  • V.N. Kharkyanen Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • S.O. Yesylevskyy Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • N.M. Berezetskaya Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.6.585

Keywords:

-

Abstract

The general theory of the single-file multiparticle diffusion in narrow pores can be greatly simplified in the case of the inverted bell-like shape of a single-particle energy profile, which is often observed in biological ion channels. There is a narrow and deep groove in the energy landscape of multiple interacting ions in such profiles, which corresponds to the pre-defined optimal conduction pathway in the configurational space. If such a groove exists, the motion of multiple ions can be reduced to the motion of a single quasiparticle, called the superion, which moves in a one-dimensional effective potential. The concept of superions reduces the computational complexity of the problem and provides the very clear physical interpretation of conduction phenomena in narrow pores.

References

D.A. Doyle et al., Science 280, 69 (1998).

https://doi.org/10.1126/science.280.5360.69

S. Berneche and B. Roux, Nature 414, 73 (2001).

https://doi.org/10.1038/35102067

B. Hille, Ion Channels of Excitable Membranes(Sinauer Associates, Sunderland, Mass., 2001).

G. Hummer, J.C. Rasaiah, and J.P. Noworyta, Nature 414, 188 (2001).

https://doi.org/10.1038/35102535

F. Zhu and K. Schulten, Biophys. J. 85, 236 (2003).

https://doi.org/10.1016/S0006-3495(03)74469-5

D.J. Mann and M.D. Halls, Phys. Rev. Lett. 90, 195503 (2003).

https://doi.org/10.1103/PhysRevLett.90.195503

S. Berneche and B. Roux, Biophys. J. 78, 2900 (2000).

https://doi.org/10.1016/S0006-3495(00)76831-7

S.-H. Chung, T.W. Allen, and S. Kuyucak, Biophys. J. 82, 628 (2002).

https://doi.org/10.1016/S0006-3495(02)75427-1

M. Compoint et al., Biochem. Biophys. Acta 1661, 26 (2004).

https://doi.org/10.1016/j.bbamem.2003.11.019

S. Chang et al., Biophys. J. 77, 2517 (1999).

https://doi.org/10.2527/1999.7792517x

B. Corry, S. Kuyucak, and S.-H. Chung, Biophys. J. 78, 2364 (2000).

https://doi.org/10.1016/S0006-3495(00)76781-6

A. Aksimentiev and K. Schulten, Biophys. J. 88, 3745 (2005).

https://doi.org/10.1529/biophysj.104.058727

V.N. Kharkyanen and S.O. Yesylevskyy, Phys. Rev. E 80, 031118 (2009).

https://doi.org/10.1103/PhysRevE.80.031118

R.J. Mashl et al., Biophys. J. 81, 2473 (2001).

https://doi.org/10.1016/S0006-3495(01)75893-6

S.O. Yesylevskyy and V.N. Kharkyanen, Phys. Chem. Chem. Phys., 3111 (2004).

https://doi.org/10.1039/b316452g

P. McGill and M.F. Schumaker, Biophys. J. 71, 1723 (1996).

https://doi.org/10.1016/S0006-3495(96)79374-8

W. Stephan, B. Kleutsch, and E. Frehland, J. of Theor. Biol. 105, 287 (1983).

https://doi.org/10.1016/S0022-5193(83)80009-5

S.O. Yesylevskyy and V.N. Kharkyanen, Chem. Phys. 312, 127 (2004).

https://doi.org/10.1016/j.chemphys.2004.11.031

B. Hille and W. Schwarz, J. Gen. Physiol. 72, 409 (1978).

https://doi.org/10.1085/jgp.72.4.409

Downloads

Published

2022-02-10

How to Cite

Kharkyanen, V., Yesylevskyy, S., & Berezetskaya, N. (2022). Superions in the Narrow Nanopores with Multiple Occupancy. Ukrainian Journal of Physics, 56(6), 585. https://doi.org/10.15407/ujpe56.6.585

Issue

Section

General problems of theoretical physics