Structural Behavior of Aqueous Solutions Using Time Domain Reflectometry Technique

Authors

  • A.C. Kumbharkhane School of Physical Sciences, Swami Ramanand Teerth Marathwada University

DOI:

https://doi.org/10.15407/ujpe56.8.811

Keywords:

-

Abstract

We have developed and established the TDR technique that provides information about the dielectric permittivity in the frequency range from 10 MHz to 30 GHz. The dielectric permittivity for the aqueous solutions can be explained by using a hydrogen-bond model by assuming the formation of hydrogen bonds between water–water and water–solute pairs. The orientational correlation between neighbouring molecules due to hydrogen bonds is determined in terms of the Kirkwood correlation factor. The number of hydrogen bonds in some aqueous solutions is computed.

References

R.H. Cole, J.G. Berberian, S. Mashimo, G. Chryssikos, A. Burns, and E. Tombari, J. Appl. Phys. 66, 793 (1989).

https://doi.org/10.1063/1.343499

S.O. Nelson and L. Onsager, A SAE 18, 714(1975).

https://doi.org/10.1016/0017-9310(75)90288-4

S. Sudo, N. Shinyashiki, Y. Kitsuki, and S. Yagihara, J. Phys. Chem. A 106, 458 (2002).

https://doi.org/10.1021/jp013117y

Y. Li-jun, Y. Xiao-Qing, H. Ka-Ma, J. Guo-Zhu, and S Hui, Int. J. Mol. Sci. 10, 1261 (2009).

U. Kaatze, R. Pottel, and M. Schafer, J. Phys. Chem. 93, 5623 (1989).

https://doi.org/10.1021/j100351a057

S.M. Puranik, A.C. Kumbharkhane, and S.C. Mehrotra, J. Microwave Power and Electromag. Wave 26, 196 (1991).

https://doi.org/10.1080/08327823.1991.11688157

A.C. Kumbharkhane, S.M. Puranik, and S.C. Mehrotra, J. Chem. Soc. Faraday Trans. 87, 1569 (1991).

https://doi.org/10.1039/FT9918701569

J. Hubbard and L. Onsager, J. Chem. Phys. 67, 4850 (1977).

https://doi.org/10.1063/1.434664

A.C. Kumbharkhane, M.P. Lokhande, S.N. Helambe, S. Doraiswamy, and S.C. Mehrotra, Pramana-J. Phys. 46, 91 (1996).

https://doi.org/10.1007/BF02848226

M.I. Shakhparonov, and Ya.Yu. Akhadov, Zh. Strukt. Khim. 6, 21 (1965).

https://doi.org/10.1007/BF00743862

D.S. Venables and A.S. Charles, J. Chem. Phys. 113, 11222 (2000).

https://doi.org/10.1063/1.1328072

R. Ludwig and M.D. Zeidler, J. Mol. Liquids 57, 181 (1992).

U. Kaatze and V. Lonnecke-Gabel, J. Mol. Liquids 48, 45 (1991).

https://doi.org/10.1016/0167-7322(91)80025-Y

A.C. Kumbharkhane, S.N. Helambe, S. Doraiswamy, and S.C. Mehrotra, J. Chem. Phys. 99, 10 (1994).

https://doi.org/10.1063/1.465255

S.M. Puranik, A.C. Kumbharkhane, and S.C. Mehrotra, J. Chem. Soc. Faraday Trans. 88, 433 (1992).

https://doi.org/10.1039/FT9928800433

Yan Zan Wei, A.C. Kumbharkhane, M. Sadeghi, J.T. Sage, W.D. Tian, P.M. Champion, S. Sridhar, and M.J. McDonald, J. Phys. Chem. 98, 26 (1994).

A.C. Kumbharkhane, M.N. Shinde, S.C. Mehrotra, N. Oshiki, N. Shinyashiki, S. Yagihara, and S. Sudo, J. Phys. Chem. A 113, 10196 (2009).

https://doi.org/10.1021/jp904845p

S. Harviliak and S.A. Negami, J. Polym. Sci. Part. C 14, 99 (1996).

https://doi.org/10.1002/polc.5070140111

J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, Chem. Phys. Lett. 165, 369 (1990).

https://doi.org/10.1016/0009-2614(90)87204-5

J. Kaatze, R. Behrends, and R. Pottel, J. Non. Cryst. Solids 305, 19 (2002).

https://doi.org/10.1016/S0022-3093(02)01084-0

T. Fukasawa, T. Sato, J. Watanabe, Y. Hama, W. Kunz, and R. Buchner, Phys. Rev. Lett. 95, 197802 (2005).

https://doi.org/10.1103/PhysRevLett.95.197802

A. Luzar, J. Mol. Liquids 46, 221 (1990).

https://doi.org/10.1016/0167-7322(90)80056-P

Downloads

Published

2022-02-09

How to Cite

Kumbharkhane, A. (2022). Structural Behavior of Aqueous Solutions Using Time Domain Reflectometry Technique. Ukrainian Journal of Physics, 56(8), 811. https://doi.org/10.15407/ujpe56.8.811

Issue

Section

Soft matter