Electrical Friedericksz Transition in a Nematic Cell with Periodic Polar Anchoring Energy

Authors

  • M.F. Ledney Taras Shevchenko National University of Kyiv, Faculty of Physics
  • O.S. Tarnavskyy Taras Shevchenko National University of Kyiv, Faculty of Physics

DOI:

https://doi.org/10.15407/ujpe56.9.880

Keywords:

-

Abstract

The threshold value for the electrical Friedericksz transition in a nematic liquid crystal cell with the periodic energy of director anchoring with the cell surface has been derived, and the above-threshold spatial distribution of the director in the applied electric field has been determined. The threshold value was shown to depend nonmonotonously on the number s of anchoring energy periods across the cell length. The above-threshold distribution of the director at integer s traces a periodic variation of the anchoring energy. The amplitude of the director's periodic deviation grows with the reduction of the ratio between the cell thickness and the anchoring energy period.

References

P.G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).

https://doi.org/10.1016/B978-0-12-460350-9.50040-0

L.M. Blinov, Electrooptical and Magnetooptical Properties of Liquid Crystals (Wiley, New York, 1983).

A.S. Sonin, Introduction to the Liquid Crystal Physics (Nauka, Moscow, 1983) (in Russian).

Yu.P. Bobylev and S.A. Pikin, Zh. Èksp. Teor. Fiz. 72, 369 (1977).

Y.P. Bobylev, V.G. Chigrinov, and S.A. Pikin, J. Phys. Colloq. (Paris) 40, 331 (1979).

https://doi.org/10.1051/jphyscol:1979364

M.F. Ledney and I.P. Pinkevich, Zh. Èksp. Teor. Fiz. 127, 898 (2005).

V.P. Romanov and G.K. Sklyarenko, Zh. Èksp. Teor. Fiz. 116, 543 (1999).

M.F. Ledney, Kristallogr. 51, 705 (2006).

https://doi.org/10.1134/S1063774506040213

F. Lonberg and R.B. Meyer, Phys. Rev. Lett. 55, 718 (1985).

https://doi.org/10.1103/PhysRevLett.55.718

E. Miraldi, C. Oldano, and A. Strigazzi, Phys. Rev. A 34, 4348 (1986).

https://doi.org/10.1103/PhysRevA.34.4348

C. Oldano, Phys. Rev. Lett. 56, 1098 (1986).

https://doi.org/10.1103/PhysRevLett.56.1098

D. Krzyzanski and G. Derfel, Phys. Rev. E 61, 6663 (2000).

https://doi.org/10.1103/PhysRevE.61.6663

M.F. Ledney and I.P. Pinkevich, Ukr. Fiz. Zh. 51, 367 (2006).

https://doi.org/10.1134/S1063774506040213

M.F. Ledney, I.P. Pinkevich, and V.Yu. Reshetnyak, Zh. Èksp. Teor. Fiz. 107, 1921 (1995).

M.F. Ledney, Pis'ma Zh. Eksp. Teor. Fiz. 85, 407 (2007).

V.M. Pergamenshchik, Phys. Rev. E 61, 3936 (2000).

https://doi.org/10.1103/PhysRevE.61.3936

A.L. Alexe-Ionescu, G. Barbero, and I. Lelidis, Phys. Rev. E 66, 061705 (2002).

https://doi.org/10.1103/PhysRevE.66.061705

G. Barbero, L.R. Evangelista, and I. Lelidis, Phys. Rev. E 67, 051708 (2003).

https://doi.org/10.1103/PhysRevE.67.051708

G. Barbero, G. Skačej, A.L. Alexe-Ionescu, and S. Žumer, Phys. Rev. E 60, 628 (1999).

https://doi.org/10.1103/PhysRevE.60.628

T.J. Atherton and J.R. Sambles, Phys. Rev. E 74, 022701 (2006).

https://doi.org/10.1103/PhysRevE.74.022701

N. Sato and K. Okumura, Chem. Phys. Lett. 453, 274 (2008).

https://doi.org/10.1016/j.cplett.2008.01.064

A. Poniewierski and S. Kondrat, J. Mol. Liq. 112, 61 (2004).

https://doi.org/10.1016/j.molliq.2003.11.010

F. K.P. Haddadan and S. Dietrich, Phys. Rev. E 73, 051708 (2006).

C. Anquetil-Deck and D.J. Cleaver, Phys. Rev. E 82, 031709 (2010).

https://doi.org/10.1103/PhysRevE.82.031709

A. Rapini and M. Papolar, J. Phys. Colloq. (Paris) 30, 54 (1969).

https://doi.org/10.1051/jphyscol:1969413

H. Gruler, T.J. Scheffer, and G. Meier, Z. Naturforsch. A 27, 966 (1972).

https://doi.org/10.1515/zna-1972-0613

Published

2022-02-08

How to Cite

Ledney М., & Tarnavskyy О. (2022). Electrical Friedericksz Transition in a Nematic Cell with Periodic Polar Anchoring Energy. Ukrainian Journal of Physics, 56(9), 880. https://doi.org/10.15407/ujpe56.9.880

Issue

Section

Soft matter