Mysterious Quantum Effects Observed with Neutrons

Authors

  • H. Rauch Atominstitut, Vienna University of Technology

DOI:

https://doi.org/10.15407/ujpe57.4.469

Keywords:

-

Abstract

Single-particle interference phenomena can be observed with neutrons, and the "entanglement of degrees of freedom", i.e. the contextuality, can be verified and used in further experiments. Entanglement of two photons or atoms is a complementary situation to the double-slit diffraction of a single photon, neutron, or atom. In this respect, neutrons are proper tools for testing quantum mechanics, because they are massive, they couple to electromagnetic fields due to their magnetic moment, and they are subject to all basic interactions, and they are sensitive to topological effects as well. The
4π-symmetry of spinor wave functions, the spin-superposition law, and many topological phenomena can be made visible, which shows interesting intrinsic features of quantum physics. Related experiments will be discussed. Deterministic and stochastic partial absorption experiments can be described by Bell-type inequalities. Recent neutron interferometry experiments based on post-selection methods have renewed the discussion about quantum non-locality and the quantum measuring process. It has been shown that interference phenomena can be revived even when the overall interference pattern has lost its contrast. This indicates a persisting coupling in the phase space even in cases of spatially separated Schrödinger cat-like situations. These states are extremely fragile and sensitive against any kind of fluctuations and other de-coherence processes. More complete quantum experiments also show that a complete retrieval of quantum states behind an interaction volume becomes impossible in principle.

References

H. Maier-Leibnitz and T. Springer, Z. Physik 167, 386 (1962).

https://doi.org/10.1007/BF01378119

H. Rauch, W. Treimer, and U. Bonse, Phys. Lett. A 47, 369 (1974).

https://doi.org/10.1016/0375-9601(74)90132-7

F. Mezei, Z. Physik 25, 146 (1972).

https://doi.org/10.2307/841359

A.I. Ioffe, V.S. Zabiyankan, and G.M. Drabkin, Phys. Lett. 111, 373 (1985).

https://doi.org/10.1016/0375-9601(85)90373-1

H. Rauch and S.A. Werner, Neutron Interferometry (Clarendon Press, Oxford, 2000).

U. Bonse, and M. Hart, Appl. Phys. Lett. 6, 155 (1965).

https://doi.org/10.1063/1.1754212

W. Bauspiess, U. Bonse, and W. Graeff, J. Appl. Cryst. 9, 68 (1976).

https://doi.org/10.1107/S0021889876010662

H. Rauch and D. Petrascheck, in Neutron Diffraction, edited by H. Dachs, (Springer, Berlin, 1978), p. 303.

https://doi.org/10.1007/978-3-642-81236-1_9

M.L. Goldberger and F. Seitz, Phys. Rev. 71, 294 (1947).

https://doi.org/10.1103/PhysRev.71.294

V.F. Sears, Neutron Optics (Oxford Univ. Press, 1989).

R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, New York, 1965), Vol. III.

https://doi.org/10.1119/1.1972241

R.J. Glauber, Phys. Rev. 130, 2529; 131, 2766 (1963).

https://doi.org/10.1103/PhysRev.130.2529

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995).

https://doi.org/10.1017/CBO9781139644105

H. Rauch, H. Wlwitsch, H. Kaiser, R. Clothier, and S.A. Werner, Phys. Rev. A 53, 902 (1996).

https://doi.org/10.1103/PhysRevA.53.902

R. Colella, A.W. Overhauser, and S.A. Werner, Phys. Rev. Lett. 34, 1472 (1975).

https://doi.org/10.1103/PhysRevLett.34.1472

S.A. Werner, J.L. Staudenmann, and R. Colella, Phys. Rev. Lett. 42, 1103 (1979).

https://doi.org/10.1103/PhysRevLett.42.1103

J.L. Staudenmann, S.A. Werner, R. Colella, and A.W. Overhauser, Phys. Rev. A 21, 1419 (1980).

https://doi.org/10.1103/PhysRevA.21.1419

D.M. Greenberger, Rev. Mod. Phys. 55, 875 (1983).

https://doi.org/10.1103/RevModPhys.55.875

U. Bonse and T. Wroblewski, Phys. Rev. Lett. 51, 1401 (1983).

https://doi.org/10.1103/PhysRevLett.51.1401

M.A. Horne, A. Zeilinger, A.G. Klein, and G.I. Opat, Phys. Rev. A 28, 1 (1983).

https://doi.org/10.1103/PhysRevA.28.1

A.G. Klein, G.I. Opat, A. Cimmino, A. Zeilinger, W. Treimer, and R. Gähler, Phys. Rev. Lett. 46, 1551 (1981).

https://doi.org/10.1103/PhysRevLett.46.1551

H. Rauch, A. Zeilinger, G. Badurek, A. Wilfing, W. Bauspiess, and U. Bonse, Phys. Lett. A 54, 425 (1975).

https://doi.org/10.1016/0375-9601(75)90798-7

S.A. Werner, R. Colella, A.W. Overhauser, and C.F. Eagen, Phys. Rev. Lett. 35, 1053 (1975).

https://doi.org/10.1103/PhysRevLett.35.1053

E.P. Wigner, Am. J. Phys. 31, 6 (1963).

https://doi.org/10.1119/1.1934007

J. Summhammer, G. Badurek, H. Rauch, U. Kischko, and A. Zeilinger, Phys. Rev. A 27, 2523 (1983).

https://doi.org/10.1103/PhysRevA.27.2523

G.M. Drabkin and R.A. Zhitnikov, Sov. Phys. JETP 11, 729 (1960).

B. Alefeld, G. Badurek, and H. Rauch, Z. Phys. B 41, 231 (1981).

https://doi.org/10.1007/BF01294428

G. Badurek, H. Rauch, and J. Summhammer, Phys. Rev. Lett. 51, 1015 (1983).

https://doi.org/10.1103/PhysRevLett.51.1015

J. Summhammer, K.A. Hamacher, H. Kaiser, H. Weinfurter, D.L. Jacobson, and S.A. Werner, Phys. Rev. Lett. 75, 3206 (1995).

https://doi.org/10.1103/PhysRevLett.75.3206

G. Badurek, H. Rauch, and D. Tuppinger, Phys. Rev. A 34, 2600 (1986).

https://doi.org/10.1103/PhysRevA.34.2600

B.D. Josephson, Rev. Mod. Phys. 46, 251 (1974).

https://doi.org/10.1103/RevModPhys.46.251

J. Summhammer, H. Rauch, and D. Tuppinger, Phys. Rev. A 36, 4447 (1987).

https://doi.org/10.1103/PhysRevA.36.4447

H. Rauch, J. Summhammer, M. Zawisky, and E. Jericha, Phys. Rev. A 42, 3726 (1990).

https://doi.org/10.1103/PhysRevA.42.3726

M. Namiki and S. Pascazio, Phys. Lett. A 147, 430 (1990).

https://doi.org/10.1016/0375-9601(90)90600-S

J. Bell, Physics 1, 195 (1965).

H. Rauch and J. Summhammer, Phys. Rev. 46, 7284 (1992).

https://doi.org/10.1103/PhysRevA.46.7284

W.K. Wooters and W.H. Zurek, Phys. Rev. D 19, 473 (1979).

https://doi.org/10.1103/PhysRevD.19.473

G. Jaeger, A. Shimony, and L. Vaidman, Phys. Rev. A 51, 54 (1995).

https://doi.org/10.1103/PhysRevA.51.54

B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996).

https://doi.org/10.1103/PhysRevLett.77.2154

H. Rauch, Phys. Lett. A 173, 240 (1993).

https://doi.org/10.1016/0375-9601(93)90270-A

D.L. Jacobson, S.A. Werner, and H. Rauch, Phys. Rev. A 49, 3196 (1994).

https://doi.org/10.1103/PhysRevA.49.3196

M. Zawisky, H. Rauch, and Y. Hasegawa, Phys. Rev. A 50, 5000 (1994).

https://doi.org/10.1103/PhysRevA.50.5000

M. Heinrich, D. Petrascheck, and H. Rauch, Z. Physik B 72, 357 (1988).

https://doi.org/10.1007/BF01312822

W. Schleich and J.A. Wheeler, Nature 326, 574 (1987).

https://doi.org/10.1038/326574a0

A. Legett, in Proc. Int. Symp. on Found. Quantum Mechanics, edited by S. Kamefuchi (Phys. Soc. Japan, Tokyo, 1984), p. 74.

W. Schleich and M. Pernigo, and Fam Le Kien, Phys. Rev. A 44, 2172 (1991).

https://doi.org/10.1103/PhysRevA.44.2172

D.F. Walls and G.J. Milburn, Phys. Rev. A 31, 2403 (1985).

https://doi.org/10.1103/PhysRevA.31.2403

H. Zurek, Physics Today, Oct. 1991, p. 36.

https://doi.org/10.1063/1.881293

P. Blanchard and A. Jadczyk, Phys. Lett. A 175, 157 (1993).

https://doi.org/10.1016/0375-9601(93)90818-K

V. Buzek, C.H. Keitel, and P.L. Knight, Phys. Rev. A 51, 2594 (1995).

https://doi.org/10.1103/PhysRevA.51.2594

D.F. Walls, Nature 306, 141 (1983).

https://doi.org/10.1038/306141a0

R. Loudon and P.L. Knight, J. Mod. Opt. 34, 709 (1987).

https://doi.org/10.1080/09500348714550721

J. Jansky and A.V. Vinogradov, Phys. Rev. Lett. 64, 2771 (1990).

https://doi.org/10.1103/PhysRevLett.64.2771

E. Wolf, Phys. Rev. Lett. 63, 2220 (1989).

https://doi.org/10.1103/PhysRevLett.63.2220

R. Clothier, H. Kaiser, S.A. Werner, H. Rauch, and H. Wölwitsch, Phys. Rev. A 44, 5357 (1991).

https://doi.org/10.1103/PhysRevA.44.5357

H. Rauch, J. Phys.: Conf. Series 36, 164 (2006).

https://doi.org/10.1088/1742-6596/36/1/025

H. Rauch, Phys. Scr. T 135, 014027 (2009)

https://doi.org/10.1088/0031-8949/2009/T135/014027

S. Pancharatram, Proc. Indian Acad. Sci. A 44, 247 (1956).

https://doi.org/10.1007/BF03046050

M.V. Berry, Proc. Royal Soc. London A 392, 45 (1984).

https://doi.org/10.1098/rspa.1984.0023

Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).

https://doi.org/10.1103/PhysRevLett.58.1593

A.G. Wagh, V.C. Rakhecha, J. Summhammer, G. Badurek, H. Weinfurter, B.M. Allman, H. Kaiser, K. Hamacher, D.L. Jacobson, and S.A. Werner, Phys. Rev. Lett. 78, 755 (1997).

https://doi.org/10.1103/PhysRevLett.78.755

B.E. Allman, A. Cimmino, A.G. Klein, G.I. Opat, H. Kaiser, and S.A. Werner, Phys. Rev. Lett. 68, 2409 (1992).

https://doi.org/10.1103/PhysRevLett.68.2409

A. Cimmino, G.I. Opat, A.G. Klein, H. Kaiser, S.A. Werner, M. Arif, and R. Clothier, Phys. Rev. Lett. 68, 380 (1989).

https://doi.org/10.1103/PhysRevLett.63.380

S. Filipp, J. Klepp, Y. Hasegawa, C. Plonka-Spehr, U. Schmidt, P. Geltenbort, and H. Rauch, Phys. Rev. Lett. 102, 030404 (2009)

https://doi.org/10.1103/PhysRevLett.102.030404

J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988).

https://doi.org/10.1103/PhysRevLett.60.2339

S. Basu, S. Bandyopadhyay, G. Kar, and D. Home, Phys. Lett. A 270, 281 (2001).

Y. Hasegawa, R. Loidl, G. Badurek, M. Baron, and H. Rauch, Nature 425, 46 (2002).

https://doi.org/10.1143/JPSJS.72SC.46

S. Filipp, Y. Hasegawa, R. Loidl, and H. Rauch, Phys. Rev. A 72, 021602 (2005).

https://doi.org/10.1103/PhysRevA.72.021602

G. DeChiara and G.M. Palma, Phys. Rev. Lett. 91, 090404 (2003).

https://doi.org/10.1103/PhysRevLett.91.090404

A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

https://doi.org/10.1103/PhysRev.47.777

D.M. Greenberger, M.A. Horne, and A. Zeilinger, in Bell's Theorem, Quantum Theory and Conceptions of the Universe, edited by M. Kafatos (Kluwer, Dordrecht, 1989), p. 69.

https://doi.org/10.1007/978-94-017-0849-4_10

S.J. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ. Press, Cambridge, 1987).

A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).

https://doi.org/10.1103/PhysRevLett.49.91

Z.Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 50 (1988).

https://doi.org/10.1103/PhysRevLett.61.50

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 81, 5039 (1998).

https://doi.org/10.1103/PhysRevLett.81.5039

X.Y. Zou, T.P. Grayson, and L. Mandel, Phys. Rev. Lett. 69, 3041 (1992).

https://doi.org/10.1103/PhysRevLett.69.3041

H. Bartosik, J. Klepp, C. Schmitzer, S. Sponar, A. Cabello, H. Rauch, and Y. Hasegawa, Phys. Rev. Lett. 103, 040403 (2009).

https://doi.org/10.1103/PhysRevLett.103.040403

S. Kochen and F.P. Specker, J. Math. Mech. 17, 59 (1967).

https://doi.org/10.1512/iumj.1968.17.17004

D. Mermin, Phys. Rev. Lett. 65, 1838 (1990).

https://doi.org/10.1103/PhysRevLett.65.1838

Y. Hasegawa, R. Loidl, G. Badurek, M. Baron, and H. Rauch, Phys. Rev. Lett. 97, 230401 (2006).

https://doi.org/10.1103/PhysRevLett.97.230401

C. Simon, M. Zukovski, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 85, 1783 (2000).

https://doi.org/10.1103/PhysRevLett.85.1783

C. Cinelli, M. Barbieri, P. Mataloni, and F. De Martini, Phys. Rev. Lett. 95, 240405 (2005).

https://doi.org/10.1103/PhysRevLett.95.240405

A. Cabello, S. Filipp, H. Rauch, and Y. Hasegawa, Phys. Rev. Lett. 100, 130404 (2008).

https://doi.org/10.1103/PhysRevLett.100.130404

S. Sponar, J. Klepp, R. Loidl, S. Filipp, G. Badurek, and H. Rauch, Phys. Rev. A 78, 061604 (2008).

https://doi.org/10.1103/PhysRevA.78.061604

T.M. Nieuwenhuizen, Found. Phys. 41, 580 (2011).

https://doi.org/10.1007/s10701-010-9461-z

H.A. Lorentz, Theorie der Strahlung (Akademische Verlagsgesellschaft, Leipzig, 1927).

I. Prigogine, in Proc. Ecol. Phys. Chem., Siena (Elsevier, Amsterdam, 1991), p. 8.

F. Haag, Comm. Math. Phys. 123, 245 (1990).

https://doi.org/10.1007/BF02278010

N. Komo, K. Machida, M. Namiki, and S. Pascazio, Phys. Rev. A 54, 1064 (1996).

https://doi.org/10.1103/PhysRevA.54.1064

Downloads

Published

2012-04-30

How to Cite

Rauch, H. (2012). Mysterious Quantum Effects Observed with Neutrons. Ukrainian Journal of Physics, 57(4), 469. https://doi.org/10.15407/ujpe57.4.469

Issue

Section

Physics experiment techniques