Synthesis of Nanotubes from Mesoporous Nanocrystalline Titanium Dioxide

Authors

  • N.I. Ermokhina L.V. Pysarzhevskyi Institute of Physical Chemistry, Nat. Acad. of Sci. of Ukraine
  • V.A. Nevinskiy L.V. Pysarzhevskyi Institute of Physical Chemistry, Nat. Acad. of Sci. of Ukraine
  • P.A. Manorik L.V. Pysarzhevskyi Institute of Physical Chemistry, Nat. Acad. of Sci. of Ukraine
  • V.G. Ilyin L.V. Pysarzhevskyi Institute of Physical Chemistry, Nat. Acad. of Sci. of Ukraine
  • N.N. Tsiba Institute for Sorption and Problems of Endoecology, Nat. Acad. of Sci. of Ukraine
  • A.M. Puziy Institute for Sorption and Problems of Endoecology, Nat. Acad. of Sci. of Ukraine
  • N.N. Shcherbatuuk M.G. Kholodnyi Institute of Botany, Nat. Acad. of Sci. of Ukraine
  • D.O. Klymchyuk M.G. Kholodnyi Institute of Botany, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.7.761

Keywords:

-

Abstract

Mesoporous nanocrystalline TiO2 (the anatase phase with spherical crystallites smaller than 10~nm and with the pore diameter larger than 17 nm) is obtained by the sol-gel synthesis followed by a hydrothermal treatment. It is used for the fabrication of titanate nanotubes using the hydrothermal process in a concentrated aqueous NaOH solution at 130 ºС. The SEM, TEM, XRD, and nitrogen adsorption-desorption methods were used to study the texture and morphology of new materials. Uniform nanotubular open-ended particles characterized by an average outer diameter of about 8 nm and a length larger than 1 µm are observed. The particles are assembled into bundles about 64 nm in diameter, and the bundles were also aggregated. The calcination of titanate nanotubes in air at 300 ºС gave rise to the formation of the anatase phase (the size of crystallite was 5.7 nm), which was accompanied by a reduction of the specimen specific surface area from 255 to 190 m2/g.

References

C.A. Grimes and G.K. Mor, in TiO2 Nanotube Arrays: Synthesis, Properties, and Applications (Springer, New York, 2009), p. 358.

https://doi.org/10.1007/978-1-4419-0068-5

X. Chen and S.S. Mao, Chem. Rev. 107, 2891 (2007).

https://doi.org/10.1021/cr0500535

S.M. Gupta and M. Tripathi, Chin. Sci. Bull. 56, 1639 (2011).

https://doi.org/10.1007/s11434-011-4476-1

D.V. Bavykin, J.M. Friedrich, and F.C. Walsh, Adv. Mater. 18, 2807 (2006).

https://doi.org/10.1002/adma.200502696

Y. Cui, H. Du, and L. Wen, J. Mater. Sci. Technol. 24, 675 (2008).

H.-H. Ou and S.-L. Lo, Separat. Purif. Technol. 58, 179 (2007).

https://doi.org/10.1016/j.seppur.2007.07.017

M. Uchida, H.M. Kim, T. Kokubo et al., J. Biomed. Mater. Res. A 64, 164 (2003).

https://doi.org/10.1002/jbm.a.10414

X.X. Wang, S. Hayakawa, K. Tsuru et al., Biomaterials 23, 1353 (2002).

https://doi.org/10.1016/S0142-9612(01)00254-X

J.M. Wu, S. Hayakawa, K. Tsuru et al., Am. Ceram. Soc. 87, 1635 (2004).

https://doi.org/10.1111/j.1551-2916.2004.01635.x

F. Zhang, Z. Zheng, Y. Chen et al., J. Biomed. Mater. Res. 42, 128 (1998).

https://doi.org/10.1002/(SICI)1097-4636(199810)42:1<128::AID-JBM16>3.0.CO;2-H

H.C. Cheng, S.Y. Lee, C.C. Chen et al., Appl. Phys. Lett. 89, 173902 (2006).

https://doi.org/10.1063/1.2361279

X. Liu, P.K. Chu, and C. Ding, Mater. Sci. Eng. 47, 49 (2004).

https://doi.org/10.1016/j.mser.2004.11.001

M. Long and H.J. Rack, Biomaterials 19, 1621 (1998).

https://doi.org/10.1016/S0142-9612(97)00146-4

A. Cambell, D. Hamai, and S.C. Bondy, Neurotoxicology 22, 63 (2001).

T. Kokubo, T. Matsushita, and H. Takadama, J. Eur. Ceram. Soc. 27, 1553 (2007).

https://doi.org/10.1016/j.jeurceramsoc.2006.04.015

T. Kokubo, H.M. Kim, and M. Kawashita, Biomaterials 24, 2955 (2003).

https://doi.org/10.1016/S0142-9612(03)00094-2

K.C. Popat, M. Elgroth, T. La Tempa et al., Biomaterials 28, 4880 (2007).

https://doi.org/10.1016/j.biomaterials.2007.07.037

M. Paulose, K. Shankar, O.K. Varghese et al., Nanotechnology 17, 1446 (2006).

https://doi.org/10.1088/0957-4484/17/5/046

N.I. Ermokhina, V.I. Litvin, V.G. Ilyin, and P.A. Manorik, Ukr. Khim. Zh. 73, 21 (2007).

A.V. Korzhak, N.I. Ermokhina, A.L. Stroyuk, V.K. Bukhtiyarov, A.E. Raevskaya, V.I. Litvin, S.Ya. Kuchmiy, V.G. Ilyin, and P.A. Manorik, J. Photochem. Photobiol. A 198, 126 (2008).

https://doi.org/10.1016/j.jphotochem.2008.02.026

T. Kasuga, M. Hiramatsu, A. Hoson et al., Adv. Mater. 11, 1307 (1999).

https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H

T. Kasuga, M. Hiramatsu, A. Hoson et al., Langmuir 14, 3160 (1998).

https://doi.org/10.1021/la9713816

M. Qamar, C.R. Yoon et al., J. Korean Phys. Soc. 49, 1493 (2006).

M. Qamar, C.R. Yoon et al., Catalysis Today 131, 3 (2008).

https://doi.org/10.1016/j.cattod.2007.10.015

Q. Chen, W. Zhou et al., Adv. Mater. 14, 1208 (2002).

https://doi.org/10.1002/1521-4095(20020903)14:17<1208::AID-ADMA1208>3.0.CO;2-0

D. Wang, B. Yu, F. Zhou et al., Mat. Chem. Phys. 113, 602 (2009).

https://doi.org/10.1016/j.matchemphys.2008.08.011

G.H. Du, Q. Chen {it et al., Appl. Phys. Lett. 79, 3702 (2001).

https://doi.org/10.1063/1.1423403

Y. Yuan, W. Zhou, and B.-L. Su, Chem. Commun. XX, 1202 (2002).

https://doi.org/10.1039/b202489f

Q. Chen, G.H. Du, S. Zhang et al., Acta Crystallogr. B 58, 587 (2002).

https://doi.org/10.1107/S0108768102009084

J. Yu, H. Yu, B. Cheng et al., J. Mol. Catal. A 249, 135 (2006).

https://doi.org/10.1016/j.molcata.2006.01.003

M.A. Khan, H.-T. Jung, and O.-B. Yang, J. Phys. Chem. B 110, 6626 (2006).

https://doi.org/10.1021/jp057119k

L. Zhang, H. Lin, N. Wang et al., J. Alloys Compounds 431, 230 (2007).

https://doi.org/10.1016/j.jallcom.2006.05.065

L.Q. Weng, S.H. Song et al., J. Eur. Ceram. Soc. 26, 1405 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.01.058

E. Morgado, jr., M.A.S. de Abreu et al., Solid State Sci. 8, 888 (2006). https://doi.org/10.1016/j.solidstatesciences.2006.02.039

M. Kruk and M. Jaroniec, Chem Mater. 13, 3169 (2001). https://doi.org/10.1021/cm0101069

Downloads

Published

2012-07-30

How to Cite

Ermokhina, N., Nevinskiy, V., Manorik, P., Ilyin, V., Tsiba, N., Puziy, A., Shcherbatuuk, N., & Klymchyuk, D. (2012). Synthesis of Nanotubes from Mesoporous Nanocrystalline Titanium Dioxide. Ukrainian Journal of Physics, 57(7), 761. https://doi.org/10.15407/ujpe57.7.761

Issue

Section

Nanosystems