NMR Study of Non-Equilibrium State of Fullerene C60 in N-Methyl-2-Pyrrolidone

Authors

  • O.B. Karpenko O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • V.V. Trachevskij G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine
  • O.V. Filonenko O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • V.V. Lobanov O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • M.V. Avdeev Joint Institute for Nuclear Research
  • T.V. Tropin Joint Institute for Nuclear Research
  • O.A. Kyzyma Taras Shevchenko National University of Kyiv, Faculty of Physics
  • S.V. Snegir O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.8.860

Keywords:

-

Abstract

The results of 1H~NMR researches concerning the interaction between fullerene С60 and N-methyl-2-pyrrolidone (NMP) molecules in an as-prepared solution are reported. By comparing the spectra for pure NMP and the С60-NMP system, system the formation of a complex between fullerene and solvent molecules is revealed, which is responsible for the time-dependent solvatochromic effect discovered earlier. Different magnitudes of chemical shifts for α-, β-, γ-, and α'-protons in the NMP molecules allowed a hypothesis to be put forward that the interaction in the С60-NMP system occurs through the formation of a donor-acceptor bond between the keto-group of an NMP molecule and a fragment of a С60 molecule. The results of quantum chemical simulation for the С60 · NMP complex with a stoichiometric composition of 1:1 testify to a redistribution of the electron density over the system of bonds in an NMP  molecule induced by a С60 molecule.

References

P. Utko, R. Ferone, I.V. Krive, R.I. Shekhter, M. Jonson et al., Nature Commun. 1, 37 (2010).

https://doi.org/10.1038/ncomms1034

T. Malaspina, E.E. Fileti, and R. Rivelino, J. Phys. Chem. B 111, 11935 (2007).

https://doi.org/10.1021/jp0746244

.S. Kurosu, T. Fukuda, Y. Shibuya, and T. Maekawa, Nanoscale Res. Lett. 6, 80 (2011).

https://doi.org/10.1186/1556-276X-6-80

M.S. Liao, J.D. Watts, and M.J. Huang, J. Phys. Chem. B 111, 4374 (2007).

https://doi.org/10.1021/jp064367n

M. Alfe, B. Apicella, R. Barbella, A. Bruno, and A. Ciajolo, Chem. Phys. Lett. 405, 193 (2005).

https://doi.org/10.1016/j.cplett.2005.02.030

V.L. Aksenov, M.V. Avdeev, T.V. Tropin, M.V. Korobov, N.N. Kozhemyakina et al., Physica B 385-386, 795 (2006).

https://doi.org/10.1016/j.physb.2006.06.086

R.G. Alargova, S. Deguchi, and K. Tsujii, J. Am. Chem. Soc. 123, 10460 (2001).

https://doi.org/10.1021/ja010202a

S. Nath, H. Pal, and A.V. Sapre, Chem. Phys. Lett. 360, 422 (2002).

https://doi.org/10.1016/S0009-2614(02)00780-7

S. Nath, H. Pal, and A.V. Sapre, Chem. Phys. Lett. 327, 143 (2000).

https://doi.org/10.1016/S0009-2614(00)00863-0

N.P. Yevlampieva, Yu.F. Biryulin, E.Yu. Melenevskaja, V.N. Zgonnik, and E.I. Rjumtsev, Colloids Surf. A 209, 167 (2002).

https://doi.org/10.1016/S0927-7757(02)00177-2

O.A. Kyzyma, M.V. Korobov, M.V. Avdeev, V.M. Garamus, S.V. Snegir et al., Chem. Phys. Lett. 493, 103 (2010).

https://doi.org/10.1016/j.cplett.2010.04.076

I. Baltog, L. Mihut, M. Baibarac, N. Preda, T. Velula, and S. Lefrant, J. Opt. Adv. Mater. 7, 2165 (2005).

I. Baltog, L. Mihut, M. Baibarac, N. Preda, T. Velula, and S. Lefrant, Rom. Rep. Phys. 57, 837 (2005).

L.S. Wang, J. Conceicao, C. Changmingm, and R.E. Smalley, Chem. Phys. Lett. 182, 5 (1991).

https://doi.org/10.1016/0009-2614(91)80094-E

P.M. Allemand, A. Koch, F. Wudl, Y. Rubin, F. Diederich et al., J. Am. Chem. Soc. 113, 1050 (1991).

https://doi.org/10.1021/ja00003a053

C. Obondi1 and A.A. Rodriguez, Adv. Phys. Chem. 2010, 102167 (2010).

J.D. Crane, P.B. Hitchcock, H.W. Kroto, R. Taylor, and D.R. Walton, J. Chem. Soc., Chem. Commun. 24, 1764 (1992).

https://doi.org/10.1039/c39920001764

A. Granovsky, URL: http://lcc.chem.msu.ru/gran/gamess/index.html.

A.V. Eletskii and B.M. Smirnov, Usp. Fiz. Nauk 165, 977 (1995).

https://doi.org/10.3367/UFNr.0165.199509a.0977

D.J. Nelson, P.S. Nagarajan, C.N. Brammer, and P.T. Perumal, J. Phys. Chem. C 114, 22 (2010).

https://doi.org/10.1021/jp1017746

Spectral Database for Organic Compounds, National Institute of Advanced Industrial Science and Technology (AIST), URL: http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi.

V.N. Zgonnik, L.V. Vinogradova, Yu.E. Melenevskaja, E.E. Kever, A.V. Novokhreshenova et al., Zh. Prikl. Khim. 70, 1538 (1997).

Published

2012-08-30

How to Cite

Karpenko О., Trachevskij В., Filonenko О., Lobanov В., Avdeev М., Tropin Т., Kyzyma О., & Snegir С. (2012). NMR Study of Non-Equilibrium State of Fullerene C60 in N-Methyl-2-Pyrrolidone. Ukrainian Journal of Physics, 57(8), 860. https://doi.org/10.15407/ujpe57.8.860

Issue

Section

Nanosystems