Surface and Interface Bands of the CdTe–HgTe–CdTe Heterostructure: Evidence of Metallicity
DOI:
https://doi.org/10.15407/ujpe66.7.630Keywords:
surface states, density functional calculations, HgTe–CdTe layersAbstract
Performed full-relativistic DFT calculations have demonstrated that thin HgTe layers are metallic and, with increasing thickness, do not become insulators – either ordinary band insulators or topological insulators. The variations of the potential at the CdTe–HgTe interfaces are found to be negligible in comparison with those at the terminating surfaces of the CdTe–HgTe–CdTe films, so that the interfaces in fact do not form any potential well. It is shown that the interface-related bands of the CdTe–HgTe–CdTe films are situated well below EF, so that a dominant input into the density of states at EF and, therefore, to the conductivity is provided not by the interface states, but by the surface bands of the net layered system. It is reasonable therefore to consider an alternative interpretation of the reported thickness dependence of the conductivity of the system, such as the possible surface segregation of components or unavoidable contaminations, which seems much more realistic than the interpretation based on involving topological insulators and topologically protected surface states.
References
K.V. Klitzing, G. Dorda, M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980). https://doi.org/10.1103/PhysRevLett.45.494
C.L. Kane, E.J. Mele. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
https://doi.org/10.1103/PhysRevLett.95.226801
L. Fu, C.L. Kane. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).
https://doi.org/10.1103/PhysRevB.76.045302
S. Murakami. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett. 97, 236805 (2006).
https://doi.org/10.1103/PhysRevLett.97.236805
B.A. Bernevig, S.-C. Zhang. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).
https://doi.org/10.1103/PhysRevLett.96.106802
B.A. Bernevig, T.L. Hughes, S.-C. Zhang. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757 (2006).
https://doi.org/10.1126/science.1133734
M. K¨onig, H. Buhmann, L.W. Molenkamp, T.L. Hughes, C.-X. Liu, X.-L. Qi, S.-C. Zhang. The quantum spin Hall effect: Theory and experiment. Science 318, 766 (2007).
https://doi.org/10.1126/science.1148047
X.-L. Qi, S.-C. Zhang. The quantum spin Hall effect and topological insulators. Physics Today 63, 33 (2010).
https://doi.org/10.1063/1.3293411
P. Sengupta, T. Kubis, Y. Tan, M. Povolotskyi, G. Klimeck. Design principles for HgTe based topological insulator devices. J. Appl. Phys. 114, 043702 (2013).
https://doi.org/10.1063/1.4813877
S. K¨ufner, F. Bechstedt. Topological transition and edge states in HgTe quantum wells from fi rst principles. Phys. Rev. B 89, 195312 (2014).
https://doi.org/10.1103/PhysRevB.89.195312
J.-W. Luo, A. Zunger. Design principles and coupling mechanisms in the 2D quantum well topological insulator HgTe/CdTe. Phys. Rev. Lett. 105, 176805 (2010).
https://doi.org/10.1103/PhysRevLett.105.176805
J. Anversa, P. Piquini, T.M. Schmidt. First-principles study of HgTe/CdTe heterostructures under perturbations preserving time-reversal symmetry. Phys. Rev. B 90, 195311 (2014).
https://doi.org/10.1103/PhysRevB.90.195311
C. Br¨une, C.X. Liu, E.G. Novik, E.M. Hankiewicz, H. Buhmann, Y.L. Chen, X.L. Qi, Z.X. Shen, S.C. Zhang, L.W. Molenkamp. Quantum Hall eff ect from the topological surface states of strained bulk HgTe. Phys. Rev. Lett. 106, 126803 (2011).
https://doi.org/10.1103/PhysRevLett.106.126803
X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan. First-principles computation of material properties: The ABINIT software project. Comput. Mat. Sci. 25, 478 (2002).
https://doi.org/10.1016/S0927-0256(02)00325-7
N. Troullier, J.L. Martins. Effi cient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991).
https://doi.org/10.1103/PhysRevB.43.1993
S. Goedecker, M. Teter, J. Hutter. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703 (1996).
https://doi.org/10.1103/PhysRevB.54.1703
N. Berchenko, M.V. Pashkovskii. Mercury telluride - a zero-gap semiconductor. Usp. Fiz. Nauk 119 (6), 223 (1976).
https://doi.org/10.3367/UFNr.0119.197606b.0223
N. Orlowski, J. Augustin, Z. Go lacki, C. Janowitz, R. Manzke. Direct evidence for the inverted band structure of HgTe. Phys. Rev. B 61, R5058(R) (2000). https://doi.org/10.1103/PhysRevB.61.R5058
K.-U. Gawlik, L. Kipp, M. Skibowski, N. Or lowski, R. Manzke. HgSe: Metal or semiconductor? Phys. Rev. Lett. 78, 3165 (1997). https://doi.org/10.1103/PhysRevLett.78.3165
C. Janowitz, N. Orlowski, R. Manzke, Z. Golacki. On the band structure of HgTe and HgSe - view from photoemission. J. of Alloys and Compounds 328, 84 (2001). https://doi.org/10.1016/S0925-8388(01)01350-0
I.N. Yakovkin, P.A. Dowben. The problem of the band gap in LDA calculations. Surf. Rev. Lett. 14, 481 (2007). https://doi.org/10.1142/S0218625X07009499
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.