The Thermodesorption of CO from the Mo(110) Surface

Authors

  • N.V. Petrova Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V.D. Осовський Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • D.Yu. Balakin Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • I.N. Yakovkin Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • Yu.G. Ptushinskii Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.3.272

Keywords:

-

Abstract

The problem of the CO adsorption and dissociation on the Mo(110) surface has been studied by means of temperature-programmed
desorption (TPD) and density-functional (DFT) calculations. The TPD spectra show a first-order CO desorption, which indicates the
desorption from a virgin state, not a recombinative form of desorption. The height of the potential barrier for CO dissociation (2.75 eV), estimated from DFT calculations, substantially exceeds the energy of CO chemisorption on the Mo(110) surface (2.1 eV), which refutes a thermally induced CO dissociation. Monte Carlo simulations of TPD spectra, performed with the use of estimated chemisorption energies, are in good agreement with experiment and demonstrate that the two-peak shape of the spectra can be explained without involving the CO dissociation.

References

G. Ehrlich, T.W. Hickmott, and F.G. Hudda, J. Chem. Phys. 28, 506 (1958)

https://doi.org/10.1063/1.1744167

G. Ehrlich, J. Chem. Phys. 34, 39 (1961).

https://doi.org/10.1021/cen-v039n016.p034

R. Klein, J. Chem. Phys. 31, 1306 (1959)

https://doi.org/10.1063/1.1730589

L.W. Swanson and R. Gomer, J. Chem. Phys. 39, 2813 (1963)

https://doi.org/10.1063/1.1734111

C. Kohrt and R. Gomer, Surf. Sci. 40, 71 (1973).

https://doi.org/10.1016/0039-6028(73)90052-6

C.G. Goymour and D.A. King, J. Chem. Soc. Faraday Trans. 1 69, 736 (1973); Surf. Sci. 35, 246 (1973).

https://doi.org/10.1039/f19736900736

C. Wang and R. Gomer, Surf. Sci. 90, 10 (1979).

https://doi.org/10.1016/0039-6028(79)90007-4

J.E. Houston, Surf. Sci. 255, 303 (1991).

https://doi.org/10.1016/0039-6028(91)90687-N

J.G. Chen, M.L. Colaianni, W.H. Weinberg, and J.T. Yates, jr., Chem. Phys. Lett. 177, 113 (1991).

https://doi.org/10.1016/0009-2614(91)90054-D

F. Zaera, E. Kollin, and J.L. Gland, Chem. Phys. Lett. 121, 454 (1985).

https://doi.org/10.1016/0009-2614(85)87214-6

E. Umbach and D. Menzel, Surf. Sci. 135, 199 (1983).

https://doi.org/10.1016/0039-6028(83)90219-4

J.-W. He, W.K. Kuhn, and D.W. Goodman, Surf. Sci. 262, 351 (1992).

https://doi.org/10.1016/0039-6028(92)90131-O

J.W. Davenport, Phys. Rev. Lett. 36, 945 (1976)

https://doi.org/10.1103/PhysRevLett.36.945

R.J. Smith, J.A. Anderson, and G.J. Lepeyre, Phys. Rev. Lett. 37, 1081 (1976)

https://doi.org/10.1103/PhysRevLett.37.1081

D.E. Eastman and J.K. Cashion, Phys. Rev. Lett. 27, 1520 (1971)

https://doi.org/10.1103/PhysRevLett.27.1520

T. Gustafsson, E.W. Plummer, D.E. Eastman, and J.L. Freeouf, Sol. St. Commun. 17, 391 (1975).

https://doi.org/10.1016/0038-1098(75)90318-X

F. Zaera, J.P. Fulmer, and W.T. Tysoe, J. Vac. Sci. Technol. A 6, 875 (1988).

https://doi.org/10.1116/1.575060

A.J. Jaworowski, M. Smedh, M. Borg, A. Sandell, A. Beutler, S.L. Sorensen, E. Lundgren, and J.N. Andersen, Surf. Sci. 492, 185 (2001).

https://doi.org/10.1016/S0039-6028(01)01447-9

Z. Ji and J.-Q. Li, J. Phys. Chem. B 110, 18363 (2006).

https://doi.org/10.1021/jp063200r

M. Juel and S. Raaen, Philos. Magaz. 83, 2475 (2003).

https://doi.org/10.1080/1478643031000116023

K. Fukui, T. Aruga, and Y. Iwasawa, Surf. Sci. 281, 241 (1993).

https://doi.org/10.1016/0039-6028(93)90638-Z

T. Yang, H. Jee, J.-H. Boo, H.S. Han, G.H. Lee, Y.D. Kim, and S.-B. Lee, Bull. Korean Chem. Soc. 29, 1115 (2008)

Y.D. Kim, J.-H. Boo, and S.-B. Lee, Surf. Sci. 603, 1434 (2009).

https://doi.org/10.1016/j.susc.2008.09.053

I.N. Yakovkin and N.V. Petrova, J. Chem. Phys. 130, 174714 (2009).

https://doi.org/10.1063/1.3126774

X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D.C. Allan, Comput. Mat. Sci. 25, 478 (2002).

https://doi.org/10.1016/S0927-0256(02)00325-7

N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).

https://doi.org/10.1103/PhysRevB.43.1993

J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

https://doi.org/10.1103/PhysRevLett.77.3865

H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

https://doi.org/10.1103/PhysRevB.13.5188

P.A. Redhead, Vacuum 12, 203 (1962).

https://doi.org/10.1016/0042-207X(62)90978-8

D.A. King, Surf. Sci. 47, 384 (1975).

https://doi.org/10.1016/0039-6028(75)90302-7

H. Shimizu, K. Christmann, G. Ertl, and J. Catal. 61, 412 (1980)

https://doi.org/10.1016/0021-9517(80)90388-7

J.A. Schwarz, Surf. Sci. 87, 525 (1979)

https://doi.org/10.1016/0039-6028(79)90546-6

P. Feulner and D. Menzel, Surf. Sci. 154, 465 (1985).

https://doi.org/10.1016/0039-6028(85)90045-7

N.V. Petrova and I.N. Yakovkin, Eur. Phys. J. B 63, 17 (2008).

https://doi.org/10.1140/epjb/e2008-00217-7

J. Ren, H. Chun-Fang, J. Wang, L. Yong-Wang, and H. Jiao, Surf. Sci. 59, 212 (2005).

B. Meng and W. Y. Weinberg, J. Chem. Phys. 100, 5280 (1994)

https://doi.org/10.1063/1.467192

C. Stampfl, H.J. Kreuzer, S.H. Payne, H. Pfn¨ur, M. Scheffler, Phys. Rev. Lett. 83, 2993 (1999)

https://doi.org/10.1103/PhysRevLett.83.2993

D.L.S. Nieskens, A.P. van Bavel, and J.W. Niemantsverdriet, Surf. Sci. 546, 159 (2003). https://doi.org/10.1016/j.susc.2003.09.035

N.V. Petrova and I.N. Yakovkin, Phys. Rev. B 76, 205401 (2007) https://doi.org/10.1103/PhysRevB.76.205401

Eur. Phys. J. B 58, 257 (2007). https://doi.org/10.1159/000111938

Downloads

Published

2022-02-15

How to Cite

Petrova, N., Осовський V., Balakin, D., Yakovkin, I., & Ptushinskii, Y. (2022). The Thermodesorption of CO from the Mo(110) Surface. Ukrainian Journal of Physics, 56(3), 272. https://doi.org/10.15407/ujpe56.3.272

Issue

Section

Solid matter