Self-Associated Atomic Groups in Ga–Sn Liquid Alloys

Authors

  • R. Bilyk Ivan Franko National University of Lviv
  • S. Mudry Ivan Franko National University of Lviv

DOI:

https://doi.org/10.15407/ujpe66.4.327

Keywords:

Ga–Sn molten alloys, short-range order, surface tension, clusters, microsegregation

Abstract

The structures of a liquid eutectic alloy and one corresponding to the near-equatomic concentration in the phase diagram are investigated at different temperatures. The structure factors and pair correlation functions have been analyzed and interpreted. The temperature dependences of main structure parameters determined from these functions allowed us to suppose that the atomic distribution in both alloys is characterized by a tendency to the interaction of like-kind atoms. In addition, the structure data and the results on the density and surface tension are analyzed as well.

References

S. Liu, K. Sweatman, S. McDonald, K. Nogita. Ga-based alloys in microelectronic interconnects: A review. Materials 11, 1384 (2018).

https://doi.org/10.3390/ma11081384

D. Zivkovic, I. Katayama, L. Gomidzelovich, D. Manasijevich, R. Novakovich. Comparative thermodynamic study and phase equilibria of the Bi-Ga-Sn ternary system. Int. J. Mater. Res. 98, 1025 (2007).

https://doi.org/10.3139/146.101561

L. Akashev, V. Kononenko. Optical properties of liquid gallium-indium alloy. Tech. Phys. 43, 853 (1998).

https://doi.org/10.1134/1.1259083

I. Silverman, A. Arenshtam, D. Kijel, A. Nagler. High heat flux accelerator targets cooling with liquid-metal jet impingement. Intern. J. Heat Mass Transfer 241, 1009 (2005).

https://doi.org/10.1016/j.nimb.2005.07.161

A. Puttkammer. Mercury-free amalgam. Zahnaerztl. Rundsch. 35, 1450 (1928).

D.L. Smith, H.J. Caul. Alloys of gallium with powdered metals as possible replacement for dental amalgam. J. Am. Dent. Assoc. 53, 315 (1956).

https://doi.org/10.14219/jada.archive.1956.0187

R.E. Shaker, W.A. Brantley, Q. Wu, B.M. Culbertson. Use of DSC for study of the complex setting reaction and

microstructural stability of a gallium-based dental alloy. Thermochim. Acta 367, 393 (2001).

https://doi.org/10.1016/S0040-6031(00)00660-2

J.Y. Lefrant, L. Muller, J.E.L. de Coussaye, M. Benbabaali, C. Lebris, N. Zeitoun, C. Mari, G. Saissi, J. Ripart, J.J. Eledjam. Temperature measurement in intensive care patients: Comparison of urinary bladder, oesophageal, rectal, auxillary, and inguinal methods versus pulmonary artery core method. Intensive Care Med. 29, 414 (2003).

https://doi.org/10.1007/s00134-002-1619-5

J. Rubia-Rubia, A. Arias, A. Sierra, A. Aguirre-Jaime. Measurement of body temperature in adult patients: Comparative study of accuracy, reliability and validity of different devices. Int. J. Nurs. Stud. 48, 872 (2011).

https://doi.org/10.1016/j.ijnurstu.2010.11.003

G. Speckbrock, S. Kamitz, M. Alt, H. Schmitt. Low Melting Gallium, Indium, and Tin Eutectic Alloys, and Thermometers Employing Them. USA Patent No. 6019509, 1 February 2000.

Y. Waseda, K. Suzuki. Structure of molten silicon and germanium by X-ray diff raction. Zeit. f. Physik B. Condensed Matter. 20, 339 (1975).

https://doi.org/10.1007/BF01313204

R. Novakovich, D. Zivkovic. Thermodynamics and surface properties of liquid Ga-X (X = Sn, Zn) alloys. J. Mater. Sci. 40, 2251 (2005).

https://doi.org/10.1007/s10853-005-1942-7

M. Jin, Q. Li, R. Ying, X. Lu, X. Jin, X. Ding. Internal friction of phase transformations observed around room temperature in Ga-In-Sn eutectic alloys. Arch. Metall. Mater. 60, 2097 (2015).

https://doi.org/10.1515/amm-2015-0354

O.G. Ashkotov, M.V. Zdravomislov. Study of surface segregation and surface tension of Sn-Ga solution using AES and sessile drop methods. Surf. Sci. 338, 279 (1995).

https://doi.org/10.1016/0039-6028(95)00547-1

K.I. Ibragimov, A.G. Nalgiev. Physical Chemistry of the Interfaces of Contacting Phases (Naukova Dumka, 1976) (in Russian).

A.A. Ofi tserov, P.P. Pugachevich, G.M. Kuznetzov, G.N. Kuzmina. Surface tension of tin-gallium alloys. Izv. Vuzov. Tsvetn. Metall. 2, 130 (1968).

R. Bilyk, U. Liudkevych, S. Mudry. Structure and short range order in liquid Ga. Fiz.-Mat. Mod. Inf. Tekhn. 25, 7 (2017).

https://doi.org/10.15407/fmmit2017.25.007

R. Bilyk, A. Korolyshyn, I. Shtablavyi, Y. Kulyk, R. Ovsianyk. Structural inhomogeneties and confi guration entropy of liquid metals. In: Proceedings 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON, 2019).

https://doi.org/10.1109/UKRCON.2019.8879779

S. Mudry, R. Bilyk, R. Ovsianyk, Y. Kulyk, T. Mika. Structural features of InPbGaSnCu molten high entropy alloy. Phys. Chem. Solid State 20, 432 (2019).

https://doi.org/10.15330/pcss.20.4.432-436

V.K. Pecharsky, P.Y. Zavalij. Fundamentals of Powder Diff raction and Structural Characterization of Materials (Springer, 2008).

D.T. Cromer, J.T. Waber. The computation of atomic scattering factors. Acta Cryst. 18, 104 (1965).

https://doi.org/10.1107/S0365110X6500018X

N.H. March. Liquid Metals: Concept and Theory (Cambrige Univ. Press, 1990).

https://doi.org/10.1017/CBO9780511563928

S. Mudry, I. Shtablavyji, U. Liudkevych. Structure evolution and entropy changes of Ga0,7Bi0,3 liquid alloy. Phys. Chem. Liq. 58, 325 (2020). https://doi.org/10.1080/00319104.2019.1594223

T. Iida, R.I.L. Guthrie. The Physical Properties of Liquid Metals (Clarendon Press, 1993).

T. Gancarz. Density, surface tension and viscosity of Ga-Sn alloys. J. Mol. Liq. 241, 231 (2017). https://doi.org/10.1016/j.molliq.2017.06.002

S.W. Mayer. A molecular parameter relationship between surface tension and liquid compressibility. J. Phys. Chem. 67, 2160 (1963). https://doi.org/10.1021/j100804a046

Downloads

Published

2021-05-13

How to Cite

Bilyk, R., & Mudry, S. (2021). Self-Associated Atomic Groups in Ga–Sn Liquid Alloys. Ukrainian Journal of Physics, 66(4), 327. https://doi.org/10.15407/ujpe66.4.327

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)