Near Resonant Optical Absorption by a System Coupled with Two Laser Beams

Authors

  • A. S. Sizhuk Department of Radiophysics, Taras Shevchenko Kyiv National University
  • G. Dong Physics Department, East China Normal University

DOI:

https://doi.org/10.15407/ujpe65.4.277

Keywords:

two-laser beam spectroscopy, absorption coefficient, quantum optics, many-body interaction, non-linear optics

Abstract

The structure of a solution of the generalized Maxwell–Bloch system of equations describing the strongly pumped interacting two-level atoms is discussed. This structure is represented by means of the corresponding differential equations for each contributing process. The interaction between the processes is introduced through the interaction integral and is illustrated by the specific system of graphs. The method allows one to describe the quantum-field-induced long-range interaction prevailing over short-range collisions and causing the broadening, narrowing, and shifts of an absorption line shape. The description is given in terms of the interaction integrals which couple the collective atomic polarization and population inversion. The contributions from different effects are analyzed with the use of the additivity of the corresponding absorption/reemission rates.

Author Biography

G. Dong, Physics Department, East China Normal University

Physics Department, Prof.

References

M.T. Gruneisen, R.W. Boyd, K.R. Macdonald. Induced gain and modified absorption of a weak probe beam in a strongly driven sodium vapor. J. Opt. Soc. of Amer. B 5 (1), 123 (1988). https://doi.org/10.1364/JOSAB.5.000123

G. Khitrova, J.F. Valley, H.M. Gibbs. Gain-feedback approach to optical instabilities in sodium vapor. Phys. Rev. Lett. 60 (12), 1126 (1988). https://doi.org/10.1103/PhysRevLett.60.1126

V.V. Zherdienko, E.K. Kirilenko, S.A. Lesnik, V.B. Markov, A.I. Khizhnyak, F.M. Yatsyuk. Kinetics of a transient two-beam interaction in resonant media. Sov. J. Quant. Electron. 21 (11), 1241 (1991). https://doi.org/10.1070/QE1991v021n11ABEH004511

E. Lindholm. Pressure broadening of spectral lines. Ark. Mat. Astron. Fys. A 32, 17 (1945).

P.W. Anderson. Pressure broadening in the microwave and infra-red regions. Phys. Rev. 76, 647 (1949). https://doi.org/10.1103/PhysRev.76.647

A.C. Kolb, H. Griem. Theory of line broadening in multiplet spectra. Phys. Rev. 111, 514 (1958). https://doi.org/10.1103/PhysRev.111.514

A. Ben Reuven. The meaning of collisional broadening of spectral lines. The classical oscillation model. Adv. Atom. Mol. Phys. 5, 201 (1969). https://doi.org/10.1016/S0065-2199(08)60158-X

B.R. Mollow. Stimulated emission and absorption near resonance for driven systems. Phys. Rev. A 5, 2217 (1972). https://doi.org/10.1103/PhysRevA.5.2217

F. Schuler, W. Behmenburg. Perturbation of spectral lines by atomic interactions. Phys. Rep. C 12, 273 (1974). https://doi.org/10.1016/0370-1573(74)90018-0

A. Gallagher. The spectra of colliding atoms. In: Atomic Physics, ed. by G. zu Putlitz, E.W. Weber, A. Winnaker (Plenum Press, 1975), Vol. 4. https://doi.org/10.1007/978-1-4684-2964-0_27

K. Niemax. G. Pichler. Determination of van der Waals constants from the red wings of self-broadened Cs principal series lines. J. Phys. B 8, 2718 (1975). https://doi.org/10.1088/0022-3700/8/16/028

N. Allard, J. Kielkopf. The effect of neutral nonresonant collisions on atomic spectral lines. Rev. Mod. Phys. 54, 1103 (1982). https://doi.org/10.1103/RevModPhys.54.1103

U. Fano, A.R.P. Rau. Atomic Collisions and Spectra (Academic Press, 1986) [ISBN: 0-12-248460-6].

K. Sando, Shi-I. Pressure broadening and laser-induced spectral line shapes. Adv. At. Mol. Phys. 5, 133 (1989). https://doi.org/10.1016/S0065-2199(08)60085-8

J. Cooper. Broadening of isolated lines in the impact approximation using a density matrix formulation. Rev. Mod. Phys. 39, 167 (1967). https://doi.org/10.1103/RevModPhys.39.167

A.P. Kazantsev. Kinetic equation for a gas of excited atoms. JETP 24, 1183 (1966).

E.A. Titov. Derivation of the kinetic equation for the density matrix of two-level particles by the Green's function method. Opt. Spectr. 96, 869 (2004). https://doi.org/10.1134/1.1771421

M.O. Scully, S. Zubairy. Quantum Optics (Cambridge Univ. Press, 2002) [ISBN-13: 978-0521435956].

Z. Ficek, S. Swain. Quantum Interference and Coherence. Theory and Experiments (Springer, 2004).

D. Meiser, M.J. Holland. Steady-state superradiance with alkaline-earth-metal atoms. Phys. Rev. A 81, 033847 (2010).

https://doi.org/10.1103/PhysRevA.81.033847

A.S. Sizhuk, P.R. Hemmer. Kinetics and optical properties of the strongly driven gas medium of interacting atoms. J. Stat. Phys. 147, 132 (2012). https://doi.org/10.1007/s10955-012-0457-2

T. Bienaim, R. Bachelard, N. Piovella, R. Kaiser. Cooperativity in light scattering by cold atoms. Fortschr. Phys. 61, 377 (2013). https://doi.org/10.1002/prop.201200089

J.R. Ott, M. Wubs, P. Lodahl, N.A. Mortensen, R. Kaiser. Cooperative fluorescence from a strongly driven dilute cloud of atoms. Phys. Rev. A 87, 061801(R) (2013). https://doi.org/10.1103/PhysRevA.87.061801

L. Bellando, A. Gero, E. Akkermans, R. Kaiser. Cooperative effects and disorder: A scaling analysis of the spectrum of the effective atomic Hamiltonian. Phys. Rev. A 90, 063822 (2014). https://doi.org/10.1103/PhysRevA.90.063822

M.-T. Rouabah, M. Samaylova, R. Bachelard, Ph.W. Courteille, R. Kaiser, N. Piovella. Coherence effects in scattering order expansion of light by atomic clouds. J. Opt. Soc. Am. A 31, 1031 (2014). https://doi.org/10.1364/JOSAA.31.001031

G. ' Alvarez, D. Suter, R. Kaiser. Localization-delocalization transition in the dynamics of dipolar-coupled nuclear spin. Science 349, 846 (2015). https://doi.org/10.1126/science.1261160

Andrii S. Sizhuk, Stanislav M. Yezhov. Derivation of the model Hamiltonian in "short time scale" limit. Ukr. J. Phys. 57(6), 670 (2012).

M. Fleischhauer, S.F. Yelin. Radiative atom-atom interactions in optically dense media: Quantum corrections to the Lorentz-Lorenz formula. Phys. Rev. A 59(3), 2427 (1999). https://doi.org/10.1103/PhysRevA.59.2427

P.R. Hemmer, N.P. Bigelow, D.P. Katz, M.S. Shahriar, L. DeSalvo, R. Bonifacio. Self-organization, broken symmetry, and lasing in an atomic vapor: The interdependence of gratings and gain. Phys. Rev. Lett. 77, 1468 (1996). https://doi.org/10.1103/PhysRevLett.77.1468

Downloads

Published

2020-04-17

How to Cite

Sizhuk, A. S., & Dong, G. (2020). Near Resonant Optical Absorption by a System Coupled with Two Laser Beams. Ukrainian Journal of Physics, 65(4), 277. https://doi.org/10.15407/ujpe65.4.277

Issue

Section

Optics, atoms and molecules