Introducing the Generalized Absorptance for a Gas with Bound Atomic States

  • A. S. Sizhuk Department of Radiophysics, Taras Shevchenko National University of Kyiv
  • S. M. Yezhov Faculty of Physics, Taras Shevchenko National University of Kyiv
Keywords: absorption coefficient, quantum optics, Doppler effect, commutation relation, many-body interaction


The quantum optical theory of absorption/reemission properties of a system of interacting atoms is discussed. The calculation method of the absorption coefficient is developed with regard for the quantization of field, thermal atomic motion, Doppler effect, and the model interaction between atoms. It is shown that the formulation of the absorption coefficient in the quantum optical context is based on the commutation relation between the operators of electric field and intensity. The revealed non-linear dependence of the absorption coefficient on the atomic density, even in the case of negligible binary interaction, can be referred to a certain kind of quantum-optic collective effects.


P.W. Anderson. Pressure broadening in the microwave and infra-red regions. Phys. Rev. 76, 647 (1949).

D. Meiser, M.J. Holland. Steady-state superradiance with alkaline-earth-metal atoms. Phys. Rev. A 81, 033847 (2010).

L. Bellando, A. Gero, E. Akkermans, R. Kaiser. Cooperative effects and disorder: A scaling analysis of the spectrum of the effective atomic Hamiltonian. Phys. Rev. A 90, 06382 (2014).

M. Rouabah, R. Samaylova, Ph.W. Bachelard, R. Courteille, R. Kaiser, N. Piovella. Coherence effects in scattering order expansion of light by atomic clouds. J. Opt. Soc. Am. A 31, 1031 (2014).

A.C. Kolb, H. Griem. Theory of line broadening in multiplet spectra. Phys. Rev. 111, 514 (1958).

F.T. Arecchi, R. Bonifacio. Theory of optical maser amplifiers. IEEE J. Quantum Electron. 1, 169 (1965).

C. Mahaux, H.A. Weidenm¨uller. Shell-Model Approach to Nuclear Reactions (North-Holland, 1969).

W. Schleich. Quantum Optics in Phase Space (WileyVCH, 2001) [ISBN: 978-3-527-80255-5].

A.S. Sizhuk, R.O. Ooi. The conservative system of atoms coupled with one photon. Ann. of Phys. 360, 207 (2015).

R. R¨ohlsberger, K. Schlage, B. Sahoo, S. Couet, R. R¨uffer. Collective Lamb shift in single-photon superradiance. Science 328, 1248 (2010).

J. Keaveney, A. Sargsyan, U. Krohn, I.G. Hughes, D. Sarkisyan, C.S. Adams. Cooperative Lamb shift in an atomic vapor layer of nanometer thickness. Phys. Rev. Lett. 108, 173601 (2012).

S. Balik, A.L. Win, M.D. Havey, I.M. Sokolov, D.V. Kupriyanov. Near-resonance light scattering from a highdensity ultracold atomic Rb87 gas. Phys. Rev. A 87, 053817 (2013).

Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, R. Ozeri. Cooperative lamb shift in a mesoscopic atomic array. Phys. Rev. Lett. 113, 193002 (2014).

S. Jennewein, Y.R.P. Sortais, J.-J. Greffet, A. Browaeys. Propagation of light through small clouds of cold interacting atoms. Phys. Rev. A 94, 053828 (2016).

S.D. Jenkins, J. Ruostekoski, J. Javanainen, R. Bourgain, S. Jennewein, Y.R.P. Sortais, A. Browaeys. Optical resonance shifts in the fluorescence imaging of thermal and cold rubidium atomic gases. Phys. Rev. Lett. 116, 183601 (2016).

Marlan O. Scully, M. Zubairy Suhail. Quantum Optics (Cambridge Univ. Press, 2002) [ISBN: 978-0524235959].

L.D. Landau, E.M. Lifshitz. The Classical Theory of Fields (Elsevier, 2005).

J.R. Klauder, E.C.G. Sudarshan. Fundamentals of Quantum Optics (Dover, 2006).

How to Cite
Sizhuk, A., & Yezhov, S. (2018). Introducing the Generalized Absorptance for a Gas with Bound Atomic States. Ukrainian Journal of Physics, 62(3), 202.
Optics, lasers, and quantum electronics