Ionic Character, Phase Transitions, and Metallization in Alkaline-Earth Metal Oxides and Chalcogenides under Pressure
DOI:
https://doi.org/10.15407/ujpe65.11.1022Keywords:
alkaline-earth metal oxides, alkaline-earth metal chalcogenides, phase transitions, metallizationAbstract
The structural and thermodynamic properties of the alkaline-earth metal oxides and chalcogenides (AEMOCs) with the cubic structure (CaX, SrX, and BaX, where X = O, S, Se, and Te) and the parameters of the pressure-induced B1–B2 structural phase transitions in them have been calculated from the first principles. The crystalline and ionic radii in the AEMOCs are studied including the dependences of the ionic radii in the B1 and B2 structures on the pressure. The magnitudes of interband transitions and the band gaps in the examined compounds are calculated in the framework of the first-principles approach of the density functional theory and using the method of pseudopotential. The first-principles band calculations are carried out to determine the metallization pressures for the researched compounds.
References
P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev. 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864
P. Giannozzi, S. Baroni, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, Ch. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Uniari, R.M. Wentzcovitch. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).
https://doi.org/10.1103/PhysRevB.41.7892
A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos. Optimized pseudopotentials. Phys. Rev. B 41, 1227 (1990). https://doi.org/10.1103/PhysRevB.41.1227
A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos. Erratum: Optimized pseudopotentials. Phys. Rev. B 44 13175 (1991). https://doi.org/10.1103/PhysRevB.44.13175.3
F. Birch. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressure and 300 K. J. Geophys. Res. 83, 1257 (1978). https://doi.org/10.1029/JB083iB03p01257
H.J. Monkhorst, J.D. Pack. Special-points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
P. Richet, H.K. Mao, P.M. Bell. Static compression and equation of state of CaO to 1.35 Mbar. J. Geophys. Res. 93, 15279 (1988). https://doi.org/10.1029/JB093iB12p15279
H. Luo, R.G. Green, K. Ghandehari, T. Li, A.L. Ruoff. Structural phase transformations and the equations of state of calcium chalcogenides at high pressure. Phys. Rev. B 50, 16232 (1994). https://doi.org/10.1103/PhysRevB.50.16232
L.G. Liu, W.A. Bassett. Changes of the crystal structure and the lattice parameter of SrO at high pressure. J. Geophys. Res. 78, 8470 (1973). https://doi.org/10.1029/JB078i035p08470
K. Syassen. Pressure-induced structural transition in SrS. Phys. Status Solidi A 91, 11 (1985). https://doi.org/10.1002/pssa.2210910102
H. Luo, R.G. Greene, A.L. Ruoff. High-pressure phase transformation and the equation of state of SrSe. Phys. Rev. B 49, 15341 (1994). https://doi.org/10.1103/PhysRevB.49.15341
H.G. Zimmer, H. Winzen, K. Syassen. High-pressure phase transitions in CaTe and SrTe. Phys. Rev. B 32, 4066 (1985). https://doi.org/10.1103/PhysRevB.32.4066
L.G. Liu, W.A. Bassett. Effect of pressure on the crystal structure and the lattice parameters of BaO. J. Geophys. Res. 77, 4934 (1972). https://doi.org/10.1029/JB077i026p04934
S. Yamaoka, O. Shimomura, H. Nakazawa, O. Fukunaga. Pressure-induced phase transformation in BaS. Solid State Commun. 33, 87 (1980). https://doi.org/10.1016/0038-1098(80)90702-4
S.T. Weir, Y.K. Vohra, A.L. Ruoff. High-pressure phase transitions and the equations of state of BaS and BaO. Phys. Rev. B 33, 4221 (1986). https://doi.org/10.1103/PhysRevB.33.4221
Y. Kaneko, K. Morimoto, T. Koda. Optical properties of alkaline-earth chalcogenides. I. Single crystal growth and infrared reflection spectra due to optical phonons. J. Phys. Soc. Japan 51, 2247 (1982). https://doi.org/10.1143/JPSJ.51.2247
T.A. Grzybowski, A.L. Ruoff. High-pressure phase transition in BaSe. Phys. Rev. B 27, 6502 (1983). https://doi.org/10.1103/PhysRevB.27.6502
T.A. Grzybowski, A.L. Ruoff. Band-overlap metallization of BaTe. Phys. Rev. Lett. 53, 489 (1984). https://doi.org/10.1103/PhysRevLett.53.489
J.F. Mammone, H.K. Mao, P.M. Bell. Equations of state of CaO under static pressure conditions. Geophys. Res. Lett. 8, 140 (1981). https://doi.org/10.1029/GL008i002p00140
R. Jeanloz, T.J. Ahrens, H.K. Mao, P.M. Bell. B1-B2 transition in calcium oxide from shock-wave and diamond-cell experiments. Science 206, 829 (1979). https://doi.org/10.1126/science.206.4420.829
Y. Sato, R. Jeanloz. Phase transition in SrO. J. Geophys. Res. B 86, 11773 (1981). https://doi.org/10.1029/JB086iB12p11773
L. Pauling. The Nature of the Chemical Bond (Cornell University Press, 1960).
R.D. Shannon. Revised effective ionic radii and systematicstudies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551
F.G. Fumi, M.P. Tosi. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides-I: The Huggins-Mayer and Pauling forms. J. Phys. Chem. Solids 25, 31 (1964). https://doi.org/10.1016/0022-3697(64)90159-3
F.G. Fumi, M.P. Tosi. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides-II: The generalized Huggins-Mayer form. J. Phys. Chem. Solids 25, 45 (1964). https://doi.org/10.1016/0022-3697(64)90160-X
I.M. Boswarva. Ionic radii in the alkaline earth chalcogenides. J. Phys. C 1, 582 (1968). https://doi.org/10.1088/0022-3719/1/3/304
S. Israel, R. Saravanan, N. Srivasan, S.K. Mohanlal. An investigation on the bonding in MgO, CaO, SrO and BaO from the MEM electron density distributions. J. Phys. Chem. Solids 64, 879 (2003). https://doi.org/10.1016/S0022-3697(02)00434-1
G. Vidal-Valat, J.P. Vidal, K. Kurki-Suonio. X-ray study of the atomic charge densities in MgO, CaO, SrO and BaO. Acta Cryst. A 34, 594 (1978). https://doi.org/10.1107/S0567739478001254
R.C. Whited, W.C. Walker. Exciton and interband spectra of crystalline CaO. Phys. Rev. 188, 1380 (1969). https://doi.org/10.1103/PhysRev.188.1380
R.C. Whited, W.C. Walker. Exciton spectra of CaO and MgO. Phys. Rev. Lett. 22, 1428 (1969). https://doi.org/10.1103/PhysRevLett.22.1428
R.C. Whited, Ch.J. Flaten, W.C. Walker. Exciton thermoreflectance of MgO and CaO. Solid State Commun. 13, 1903 (1973). https://doi.org/10.1016/0038-1098(73)90754-0
A.S. Rao, R.J. Kearney. Logarithmic derivative reflectance spectra of BaO and SrO. Phys. Status Solidi B 95, 243 (1979). https://doi.org/10.1002/pssb.2220950127
Y. Kaneko, T. Koda. New developments in IIa-VIb (alkaline-earth chalcogenide) binary semiconductors. J. Cryst. Growth 86, 72 (1988). https://doi.org/10.1016/0022-0248(90)90701-L
M.A. Bolorizadeh, V.A. Sashin, A.S. Kheifets, M.J. Ford. Electronic band structure of calcium oxide. J. Electr. Spectrosc. Rel. Phenom. 141, 27 (2004). https://doi.org/10.1016/j.elspec.2004.04.004
R.J. Zollweg. Optical absorption and photoemission of barium and strontium oxides, sulphides, selenides, and tellurides. Phys. Rev. 111, 113 (1958). https://doi.org/10.1103/PhysRev.111.113
G.A. Saum, E.B. Hensley. Fundamental optical absorption in the IIA-VIB compounds. Phys. Rev. 113, 1019 (1959). https://doi.org/10.1103/PhysRev.113.1019
G. Kalpana, B. Palanivel, M. Rajagopalan. Electronic and structural properties of alkaline-earth oxides under high pressure. Phys. Rev. B 52, 4 (1995). https://doi.org/10.1103/PhysRevB.52.4
J. Hama, M. Watanabe. Equation of state and electronic structure of solid CaO under high pressure. Phys. Lett. A 115, 287 (1986). https://doi.org/10.1016/0375-9601(86)90555-4
Z. Charifi, H. Baaziz, F. El Haj Hassan, N. Bouarissa. High pressure study of structural and electronic properties of calcium chalcogenides. J. Phys.: Condens. Matter 17, 4083 (2005). https://doi.org/10.1088/0953-8984/17/26/008
Ph. Cervantes, Q. Williams, M. Cˆot'e, M. Rohlfing, M.L. Cohen, S.G. Louie. Band structures of CsCl-structured BaS and CaSe at high pressure: Implications for metallization pressures of the alkaline earth chalcogenides. Phys. Rev. B 58, 9793 (1998). https://doi.org/10.1103/PhysRevB.58.9793
R. Pandey, Ph. Lepak, J.E. Jaffe. Electronic structure of alkaline-earth selenides. Phys. Rev. B 46, 4976 (1992). https://doi.org/10.1103/PhysRevB.46.4976
R. Khenata, M. Sahnoun, H. Baltache, M. R'erat, D. Rached, M. Driz, B. Bouhafs. Structural, electronic, elastic and high-pressure properties of some alkaline-earth chalcogenides: An ab initio study. Physica B 371, 12 (2006). https://doi.org/10.1016/j.physb.2005.08.046
I.B.S. Banu, M. Rajagopalan, B. Palanivel, G. Kalpana, P. Shenbagaraman. Structural and electronic properties of SrS, SrSe, and SrTe under pressure. J. Low Temp. Phys. 112, 211 (1998). https://doi.org/10.1023/A:1022685715644
R. Khenata, H. Baltache, M. R'erat, M. Driz, M. Sahnoun, B. Bouhafs, B. Abbar. First-principle study of structural,
electronic and elastic properties of SrS, SrSe and SrTe under pressure. Physica B 339, 208 (2003). https://doi.org/10.1016/j.physb.2003.07.003
L.-Y. Lu, J.-J. Tan, O.-H. Jia, X.-R. Chen. Transition phase and electronic structure of SrS under pressure from first-principles calculations. Physica B 399, 66 (2007). https://doi.org/10.1016/j.physb.2007.05.026
¸S. U˘gur. Theoretical study of the phonon properties of SrS. Mater. Sci. Eng. B 162, 116 (2009). https://doi.org/10.1016/j.mseb.2009.03.013
G. Kalpana, B. Palanivel, M. Rajagopalan. Electronic structure and structural phase stability in BaS, BaSe, and BaTe. Phys. Rev. B 50, 12318 (1994). https://doi.org/10.1103/PhysRevB.50.12318
E.V. Stepanova, V.S. Stepanyuk, M.N. Rogaleva, O.V. Farberovich, A.A. Grigorenko, V.V. Mikhailin. Electronic structure and optical properties of the CaO compound. Fiz. Tverd. Tela 30, 2303 (1988) (in Russian).
A.E. Carlsson, J.W. Wilkins. Band-overlap metallization of BaS, BaSe, and BaTe. Phys. Rev. B 29, 5836 (1984). https://doi.org/10.1103/PhysRevB.29.5836
S.T. Weir, Y.K. Vohra, A.L. Ruoff. Pressure-induced metallization of BaSe. Phys. Rev. B 35, 874 (1987). https://doi.org/10.1103/PhysRevB.35.874
S.-H. Wei, H. Krakauer. Local-density-functional calculation of the pressure-induced metallization of BaSe and BaTe. Phys. Rev. Lett. 55, 1200 (1985). https://doi.org/10.1103/PhysRevLett.55.1200
K. Syassen, N.E. Christensen, H. Winzen, K. Fischer, J. Evers. Optical response and band-structure calculations of alkaline-earth tellurides under pressure. Phys. Rev. B 35, 4052 (1987). https://doi.org/10.1103/PhysRevB.35.4052
H. Akbarzadeh, M. Dadsetani, M. Mehrani. Electronic and structural properties of BaTe Comp. Mater. Sci. 17, 81 (2000). https://doi.org/10.1016/S0927-0256(99)00091-9
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.