Іонний характер, фазові переходи та металізація в оксидах і халькогенідах лужноземельних металів під тиском

Автор(и)

  • V.V. Pozhivatenko V.O. Sukhomlynskyi National University of Mykolayiv

DOI:

https://doi.org/10.15407/ujpe65.11.1022

Ключові слова:

оксиди лужноземельних металiв, халькогенiди лужноземельних металiв, фазовi переходи, металiзацiя

Анотація

Виходячи з перших принципiв, проведено розрахунки структурних i термодинамiчних властивостей оксидiв i халькогенiдiв лужноземельних металiв, що мають кубiчнi структури (CaX, SrX, BaX, де X = O, S, Se, Te), а також характеристик структурних фазових переходiв В1–В2 в цих речовинах пiд тиском. Дослiджено кристалiчнi I iоннi радiуси в оксидах i халькогенiдах лужноземельних металiв, у тому числi розглянуто залежнiсть радiусiв iонiв в структурах В1 та В2 вiд тиску. Обчислено величини мiжзонних переходiв i заборонених зон в даних сполуках у пiдходi теорiї функцiонала густини сумiсно з методом псевдопотенцiалу. В результатi зонних розрахункiв знайдено значення тискiв металiзацiї в цих сполуках.

Посилання

P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev. 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864

P. Giannozzi, S. Baroni, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, Ch. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Uniari, R.M. Wentzcovitch. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

https://doi.org/10.1103/PhysRevB.41.7892

A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos. Optimized pseudopotentials. Phys. Rev. B 41, 1227 (1990). https://doi.org/10.1103/PhysRevB.41.1227

A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos. Erratum: Optimized pseudopotentials. Phys. Rev. B 44 13175 (1991). https://doi.org/10.1103/PhysRevB.44.13175.3

F. Birch. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressure and 300 K. J. Geophys. Res. 83, 1257 (1978). https://doi.org/10.1029/JB083iB03p01257

H.J. Monkhorst, J.D. Pack. Special-points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

P. Richet, H.K. Mao, P.M. Bell. Static compression and equation of state of CaO to 1.35 Mbar. J. Geophys. Res. 93, 15279 (1988). https://doi.org/10.1029/JB093iB12p15279

H. Luo, R.G. Green, K. Ghandehari, T. Li, A.L. Ruoff. Structural phase transformations and the equations of state of calcium chalcogenides at high pressure. Phys. Rev. B 50, 16232 (1994). https://doi.org/10.1103/PhysRevB.50.16232

L.G. Liu, W.A. Bassett. Changes of the crystal structure and the lattice parameter of SrO at high pressure. J. Geophys. Res. 78, 8470 (1973). https://doi.org/10.1029/JB078i035p08470

K. Syassen. Pressure-induced structural transition in SrS. Phys. Status Solidi A 91, 11 (1985). https://doi.org/10.1002/pssa.2210910102

H. Luo, R.G. Greene, A.L. Ruoff. High-pressure phase transformation and the equation of state of SrSe. Phys. Rev. B 49, 15341 (1994). https://doi.org/10.1103/PhysRevB.49.15341

H.G. Zimmer, H. Winzen, K. Syassen. High-pressure phase transitions in CaTe and SrTe. Phys. Rev. B 32, 4066 (1985). https://doi.org/10.1103/PhysRevB.32.4066

L.G. Liu, W.A. Bassett. Effect of pressure on the crystal structure and the lattice parameters of BaO. J. Geophys. Res. 77, 4934 (1972). https://doi.org/10.1029/JB077i026p04934

S. Yamaoka, O. Shimomura, H. Nakazawa, O. Fukunaga. Pressure-induced phase transformation in BaS. Solid State Commun. 33, 87 (1980). https://doi.org/10.1016/0038-1098(80)90702-4

S.T. Weir, Y.K. Vohra, A.L. Ruoff. High-pressure phase transitions and the equations of state of BaS and BaO. Phys. Rev. B 33, 4221 (1986). https://doi.org/10.1103/PhysRevB.33.4221

Y. Kaneko, K. Morimoto, T. Koda. Optical properties of alkaline-earth chalcogenides. I. Single crystal growth and infrared reflection spectra due to optical phonons. J. Phys. Soc. Japan 51, 2247 (1982). https://doi.org/10.1143/JPSJ.51.2247

T.A. Grzybowski, A.L. Ruoff. High-pressure phase transition in BaSe. Phys. Rev. B 27, 6502 (1983). https://doi.org/10.1103/PhysRevB.27.6502

T.A. Grzybowski, A.L. Ruoff. Band-overlap metallization of BaTe. Phys. Rev. Lett. 53, 489 (1984). https://doi.org/10.1103/PhysRevLett.53.489

J.F. Mammone, H.K. Mao, P.M. Bell. Equations of state of CaO under static pressure conditions. Geophys. Res. Lett. 8, 140 (1981). https://doi.org/10.1029/GL008i002p00140

R. Jeanloz, T.J. Ahrens, H.K. Mao, P.M. Bell. B1-B2 transition in calcium oxide from shock-wave and diamond-cell experiments. Science 206, 829 (1979). https://doi.org/10.1126/science.206.4420.829

Y. Sato, R. Jeanloz. Phase transition in SrO. J. Geophys. Res. B 86, 11773 (1981). https://doi.org/10.1029/JB086iB12p11773

L. Pauling. The Nature of the Chemical Bond (Cornell University Press, 1960).

R.D. Shannon. Revised effective ionic radii and systematicstudies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

F.G. Fumi, M.P. Tosi. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides-I: The Huggins-Mayer and Pauling forms. J. Phys. Chem. Solids 25, 31 (1964). https://doi.org/10.1016/0022-3697(64)90159-3

F.G. Fumi, M.P. Tosi. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides-II: The generalized Huggins-Mayer form. J. Phys. Chem. Solids 25, 45 (1964). https://doi.org/10.1016/0022-3697(64)90160-X

I.M. Boswarva. Ionic radii in the alkaline earth chalcogenides. J. Phys. C 1, 582 (1968). https://doi.org/10.1088/0022-3719/1/3/304

S. Israel, R. Saravanan, N. Srivasan, S.K. Mohanlal. An investigation on the bonding in MgO, CaO, SrO and BaO from the MEM electron density distributions. J. Phys. Chem. Solids 64, 879 (2003). https://doi.org/10.1016/S0022-3697(02)00434-1

G. Vidal-Valat, J.P. Vidal, K. Kurki-Suonio. X-ray study of the atomic charge densities in MgO, CaO, SrO and BaO. Acta Cryst. A 34, 594 (1978). https://doi.org/10.1107/S0567739478001254

R.C. Whited, W.C. Walker. Exciton and interband spectra of crystalline CaO. Phys. Rev. 188, 1380 (1969). https://doi.org/10.1103/PhysRev.188.1380

R.C. Whited, W.C. Walker. Exciton spectra of CaO and MgO. Phys. Rev. Lett. 22, 1428 (1969). https://doi.org/10.1103/PhysRevLett.22.1428

R.C. Whited, Ch.J. Flaten, W.C. Walker. Exciton thermoreflectance of MgO and CaO. Solid State Commun. 13, 1903 (1973). https://doi.org/10.1016/0038-1098(73)90754-0

A.S. Rao, R.J. Kearney. Logarithmic derivative reflectance spectra of BaO and SrO. Phys. Status Solidi B 95, 243 (1979). https://doi.org/10.1002/pssb.2220950127

Y. Kaneko, T. Koda. New developments in IIa-VIb (alkaline-earth chalcogenide) binary semiconductors. J. Cryst. Growth 86, 72 (1988). https://doi.org/10.1016/0022-0248(90)90701-L

M.A. Bolorizadeh, V.A. Sashin, A.S. Kheifets, M.J. Ford. Electronic band structure of calcium oxide. J. Electr. Spectrosc. Rel. Phenom. 141, 27 (2004). https://doi.org/10.1016/j.elspec.2004.04.004

R.J. Zollweg. Optical absorption and photoemission of barium and strontium oxides, sulphides, selenides, and tellurides. Phys. Rev. 111, 113 (1958). https://doi.org/10.1103/PhysRev.111.113

G.A. Saum, E.B. Hensley. Fundamental optical absorption in the IIA-VIB compounds. Phys. Rev. 113, 1019 (1959). https://doi.org/10.1103/PhysRev.113.1019

G. Kalpana, B. Palanivel, M. Rajagopalan. Electronic and structural properties of alkaline-earth oxides under high pressure. Phys. Rev. B 52, 4 (1995). https://doi.org/10.1103/PhysRevB.52.4

J. Hama, M. Watanabe. Equation of state and electronic structure of solid CaO under high pressure. Phys. Lett. A 115, 287 (1986). https://doi.org/10.1016/0375-9601(86)90555-4

Z. Charifi, H. Baaziz, F. El Haj Hassan, N. Bouarissa. High pressure study of structural and electronic properties of calcium chalcogenides. J. Phys.: Condens. Matter 17, 4083 (2005). https://doi.org/10.1088/0953-8984/17/26/008

Ph. Cervantes, Q. Williams, M. Cˆot'e, M. Rohlfing, M.L. Cohen, S.G. Louie. Band structures of CsCl-structured BaS and CaSe at high pressure: Implications for metallization pressures of the alkaline earth chalcogenides. Phys. Rev. B 58, 9793 (1998). https://doi.org/10.1103/PhysRevB.58.9793

R. Pandey, Ph. Lepak, J.E. Jaffe. Electronic structure of alkaline-earth selenides. Phys. Rev. B 46, 4976 (1992). https://doi.org/10.1103/PhysRevB.46.4976

R. Khenata, M. Sahnoun, H. Baltache, M. R'erat, D. Rached, M. Driz, B. Bouhafs. Structural, electronic, elastic and high-pressure properties of some alkaline-earth chalcogenides: An ab initio study. Physica B 371, 12 (2006). https://doi.org/10.1016/j.physb.2005.08.046

I.B.S. Banu, M. Rajagopalan, B. Palanivel, G. Kalpana, P. Shenbagaraman. Structural and electronic properties of SrS, SrSe, and SrTe under pressure. J. Low Temp. Phys. 112, 211 (1998). https://doi.org/10.1023/A:1022685715644

R. Khenata, H. Baltache, M. R'erat, M. Driz, M. Sahnoun, B. Bouhafs, B. Abbar. First-principle study of structural,

electronic and elastic properties of SrS, SrSe and SrTe under pressure. Physica B 339, 208 (2003). https://doi.org/10.1016/j.physb.2003.07.003

L.-Y. Lu, J.-J. Tan, O.-H. Jia, X.-R. Chen. Transition phase and electronic structure of SrS under pressure from first-principles calculations. Physica B 399, 66 (2007). https://doi.org/10.1016/j.physb.2007.05.026

¸S. U˘gur. Theoretical study of the phonon properties of SrS. Mater. Sci. Eng. B 162, 116 (2009). https://doi.org/10.1016/j.mseb.2009.03.013

G. Kalpana, B. Palanivel, M. Rajagopalan. Electronic structure and structural phase stability in BaS, BaSe, and BaTe. Phys. Rev. B 50, 12318 (1994). https://doi.org/10.1103/PhysRevB.50.12318

E.V. Stepanova, V.S. Stepanyuk, M.N. Rogaleva, O.V. Farberovich, A.A. Grigorenko, V.V. Mikhailin. Electronic structure and optical properties of the CaO compound. Fiz. Tverd. Tela 30, 2303 (1988) (in Russian).

A.E. Carlsson, J.W. Wilkins. Band-overlap metallization of BaS, BaSe, and BaTe. Phys. Rev. B 29, 5836 (1984). https://doi.org/10.1103/PhysRevB.29.5836

S.T. Weir, Y.K. Vohra, A.L. Ruoff. Pressure-induced metallization of BaSe. Phys. Rev. B 35, 874 (1987). https://doi.org/10.1103/PhysRevB.35.874

S.-H. Wei, H. Krakauer. Local-density-functional calculation of the pressure-induced metallization of BaSe and BaTe. Phys. Rev. Lett. 55, 1200 (1985). https://doi.org/10.1103/PhysRevLett.55.1200

K. Syassen, N.E. Christensen, H. Winzen, K. Fischer, J. Evers. Optical response and band-structure calculations of alkaline-earth tellurides under pressure. Phys. Rev. B 35, 4052 (1987). https://doi.org/10.1103/PhysRevB.35.4052

H. Akbarzadeh, M. Dadsetani, M. Mehrani. Electronic and structural properties of BaTe Comp. Mater. Sci. 17, 81 (2000). https://doi.org/10.1016/S0927-0256(99)00091-9

Опубліковано

2020-11-12

Як цитувати

Pozhivatenko, V. (2020). Іонний характер, фазові переходи та металізація в оксидах і халькогенідах лужноземельних металів під тиском. Український фізичний журнал, 65(11), 1022. https://doi.org/10.15407/ujpe65.11.1022

Номер

Розділ

Напівпровідники і діелектрики