Ionic Character, Phase Transitions, and Metallization in Alkaline-Earth Metal Oxides and Chalcogenides under Pressure

Authors

  • V.V. Pozhivatenko V.O. Sukhomlynskyi National University of Mykolayiv

DOI:

https://doi.org/10.15407/ujpe65.11.1022

Keywords:

alkaline-earth metal oxides, alkaline-earth metal chalcogenides, phase transitions, metallization

Abstract

The structural and thermodynamic properties of the alkaline-earth metal oxides and chalcogenides (AEMOCs) with the cubic structure (CaX, SrX, and BaX, where X = O, S, Se, and Te) and the parameters of the pressure-induced B1–B2 structural phase transitions in them have been calculated from the first principles. The crystalline and ionic radii in the AEMOCs are studied including the dependences of the ionic radii in the B1 and B2 structures on the pressure. The magnitudes of interband transitions and the band gaps in the examined compounds are calculated in the framework of the first-principles approach of the density functional theory and using the method of pseudopotential. The first-principles band calculations are carried out to determine the metallization pressures for the researched compounds.

References

P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev. 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864

P. Giannozzi, S. Baroni, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, Ch. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Uniari, R.M. Wentzcovitch. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502

J.P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

https://doi.org/10.1103/PhysRevB.41.7892

A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos. Optimized pseudopotentials. Phys. Rev. B 41, 1227 (1990). https://doi.org/10.1103/PhysRevB.41.1227

A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos. Erratum: Optimized pseudopotentials. Phys. Rev. B 44 13175 (1991). https://doi.org/10.1103/PhysRevB.44.13175.3

F. Birch. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressure and 300 K. J. Geophys. Res. 83, 1257 (1978). https://doi.org/10.1029/JB083iB03p01257

H.J. Monkhorst, J.D. Pack. Special-points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

P. Richet, H.K. Mao, P.M. Bell. Static compression and equation of state of CaO to 1.35 Mbar. J. Geophys. Res. 93, 15279 (1988). https://doi.org/10.1029/JB093iB12p15279

H. Luo, R.G. Green, K. Ghandehari, T. Li, A.L. Ruoff. Structural phase transformations and the equations of state of calcium chalcogenides at high pressure. Phys. Rev. B 50, 16232 (1994). https://doi.org/10.1103/PhysRevB.50.16232

L.G. Liu, W.A. Bassett. Changes of the crystal structure and the lattice parameter of SrO at high pressure. J. Geophys. Res. 78, 8470 (1973). https://doi.org/10.1029/JB078i035p08470

K. Syassen. Pressure-induced structural transition in SrS. Phys. Status Solidi A 91, 11 (1985). https://doi.org/10.1002/pssa.2210910102

H. Luo, R.G. Greene, A.L. Ruoff. High-pressure phase transformation and the equation of state of SrSe. Phys. Rev. B 49, 15341 (1994). https://doi.org/10.1103/PhysRevB.49.15341

H.G. Zimmer, H. Winzen, K. Syassen. High-pressure phase transitions in CaTe and SrTe. Phys. Rev. B 32, 4066 (1985). https://doi.org/10.1103/PhysRevB.32.4066

L.G. Liu, W.A. Bassett. Effect of pressure on the crystal structure and the lattice parameters of BaO. J. Geophys. Res. 77, 4934 (1972). https://doi.org/10.1029/JB077i026p04934

S. Yamaoka, O. Shimomura, H. Nakazawa, O. Fukunaga. Pressure-induced phase transformation in BaS. Solid State Commun. 33, 87 (1980). https://doi.org/10.1016/0038-1098(80)90702-4

S.T. Weir, Y.K. Vohra, A.L. Ruoff. High-pressure phase transitions and the equations of state of BaS and BaO. Phys. Rev. B 33, 4221 (1986). https://doi.org/10.1103/PhysRevB.33.4221

Y. Kaneko, K. Morimoto, T. Koda. Optical properties of alkaline-earth chalcogenides. I. Single crystal growth and infrared reflection spectra due to optical phonons. J. Phys. Soc. Japan 51, 2247 (1982). https://doi.org/10.1143/JPSJ.51.2247

T.A. Grzybowski, A.L. Ruoff. High-pressure phase transition in BaSe. Phys. Rev. B 27, 6502 (1983). https://doi.org/10.1103/PhysRevB.27.6502

T.A. Grzybowski, A.L. Ruoff. Band-overlap metallization of BaTe. Phys. Rev. Lett. 53, 489 (1984). https://doi.org/10.1103/PhysRevLett.53.489

J.F. Mammone, H.K. Mao, P.M. Bell. Equations of state of CaO under static pressure conditions. Geophys. Res. Lett. 8, 140 (1981). https://doi.org/10.1029/GL008i002p00140

R. Jeanloz, T.J. Ahrens, H.K. Mao, P.M. Bell. B1-B2 transition in calcium oxide from shock-wave and diamond-cell experiments. Science 206, 829 (1979). https://doi.org/10.1126/science.206.4420.829

Y. Sato, R. Jeanloz. Phase transition in SrO. J. Geophys. Res. B 86, 11773 (1981). https://doi.org/10.1029/JB086iB12p11773

L. Pauling. The Nature of the Chemical Bond (Cornell University Press, 1960).

R.D. Shannon. Revised effective ionic radii and systematicstudies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

F.G. Fumi, M.P. Tosi. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides-I: The Huggins-Mayer and Pauling forms. J. Phys. Chem. Solids 25, 31 (1964). https://doi.org/10.1016/0022-3697(64)90159-3

F.G. Fumi, M.P. Tosi. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides-II: The generalized Huggins-Mayer form. J. Phys. Chem. Solids 25, 45 (1964). https://doi.org/10.1016/0022-3697(64)90160-X

I.M. Boswarva. Ionic radii in the alkaline earth chalcogenides. J. Phys. C 1, 582 (1968). https://doi.org/10.1088/0022-3719/1/3/304

S. Israel, R. Saravanan, N. Srivasan, S.K. Mohanlal. An investigation on the bonding in MgO, CaO, SrO and BaO from the MEM electron density distributions. J. Phys. Chem. Solids 64, 879 (2003). https://doi.org/10.1016/S0022-3697(02)00434-1

G. Vidal-Valat, J.P. Vidal, K. Kurki-Suonio. X-ray study of the atomic charge densities in MgO, CaO, SrO and BaO. Acta Cryst. A 34, 594 (1978). https://doi.org/10.1107/S0567739478001254

R.C. Whited, W.C. Walker. Exciton and interband spectra of crystalline CaO. Phys. Rev. 188, 1380 (1969). https://doi.org/10.1103/PhysRev.188.1380

R.C. Whited, W.C. Walker. Exciton spectra of CaO and MgO. Phys. Rev. Lett. 22, 1428 (1969). https://doi.org/10.1103/PhysRevLett.22.1428

R.C. Whited, Ch.J. Flaten, W.C. Walker. Exciton thermoreflectance of MgO and CaO. Solid State Commun. 13, 1903 (1973). https://doi.org/10.1016/0038-1098(73)90754-0

A.S. Rao, R.J. Kearney. Logarithmic derivative reflectance spectra of BaO and SrO. Phys. Status Solidi B 95, 243 (1979). https://doi.org/10.1002/pssb.2220950127

Y. Kaneko, T. Koda. New developments in IIa-VIb (alkaline-earth chalcogenide) binary semiconductors. J. Cryst. Growth 86, 72 (1988). https://doi.org/10.1016/0022-0248(90)90701-L

M.A. Bolorizadeh, V.A. Sashin, A.S. Kheifets, M.J. Ford. Electronic band structure of calcium oxide. J. Electr. Spectrosc. Rel. Phenom. 141, 27 (2004). https://doi.org/10.1016/j.elspec.2004.04.004

R.J. Zollweg. Optical absorption and photoemission of barium and strontium oxides, sulphides, selenides, and tellurides. Phys. Rev. 111, 113 (1958). https://doi.org/10.1103/PhysRev.111.113

G.A. Saum, E.B. Hensley. Fundamental optical absorption in the IIA-VIB compounds. Phys. Rev. 113, 1019 (1959). https://doi.org/10.1103/PhysRev.113.1019

G. Kalpana, B. Palanivel, M. Rajagopalan. Electronic and structural properties of alkaline-earth oxides under high pressure. Phys. Rev. B 52, 4 (1995). https://doi.org/10.1103/PhysRevB.52.4

J. Hama, M. Watanabe. Equation of state and electronic structure of solid CaO under high pressure. Phys. Lett. A 115, 287 (1986). https://doi.org/10.1016/0375-9601(86)90555-4

Z. Charifi, H. Baaziz, F. El Haj Hassan, N. Bouarissa. High pressure study of structural and electronic properties of calcium chalcogenides. J. Phys.: Condens. Matter 17, 4083 (2005). https://doi.org/10.1088/0953-8984/17/26/008

Ph. Cervantes, Q. Williams, M. Cˆot'e, M. Rohlfing, M.L. Cohen, S.G. Louie. Band structures of CsCl-structured BaS and CaSe at high pressure: Implications for metallization pressures of the alkaline earth chalcogenides. Phys. Rev. B 58, 9793 (1998). https://doi.org/10.1103/PhysRevB.58.9793

R. Pandey, Ph. Lepak, J.E. Jaffe. Electronic structure of alkaline-earth selenides. Phys. Rev. B 46, 4976 (1992). https://doi.org/10.1103/PhysRevB.46.4976

R. Khenata, M. Sahnoun, H. Baltache, M. R'erat, D. Rached, M. Driz, B. Bouhafs. Structural, electronic, elastic and high-pressure properties of some alkaline-earth chalcogenides: An ab initio study. Physica B 371, 12 (2006). https://doi.org/10.1016/j.physb.2005.08.046

I.B.S. Banu, M. Rajagopalan, B. Palanivel, G. Kalpana, P. Shenbagaraman. Structural and electronic properties of SrS, SrSe, and SrTe under pressure. J. Low Temp. Phys. 112, 211 (1998). https://doi.org/10.1023/A:1022685715644

R. Khenata, H. Baltache, M. R'erat, M. Driz, M. Sahnoun, B. Bouhafs, B. Abbar. First-principle study of structural,

electronic and elastic properties of SrS, SrSe and SrTe under pressure. Physica B 339, 208 (2003). https://doi.org/10.1016/j.physb.2003.07.003

L.-Y. Lu, J.-J. Tan, O.-H. Jia, X.-R. Chen. Transition phase and electronic structure of SrS under pressure from first-principles calculations. Physica B 399, 66 (2007). https://doi.org/10.1016/j.physb.2007.05.026

¸S. U˘gur. Theoretical study of the phonon properties of SrS. Mater. Sci. Eng. B 162, 116 (2009). https://doi.org/10.1016/j.mseb.2009.03.013

G. Kalpana, B. Palanivel, M. Rajagopalan. Electronic structure and structural phase stability in BaS, BaSe, and BaTe. Phys. Rev. B 50, 12318 (1994). https://doi.org/10.1103/PhysRevB.50.12318

E.V. Stepanova, V.S. Stepanyuk, M.N. Rogaleva, O.V. Farberovich, A.A. Grigorenko, V.V. Mikhailin. Electronic structure and optical properties of the CaO compound. Fiz. Tverd. Tela 30, 2303 (1988) (in Russian).

A.E. Carlsson, J.W. Wilkins. Band-overlap metallization of BaS, BaSe, and BaTe. Phys. Rev. B 29, 5836 (1984). https://doi.org/10.1103/PhysRevB.29.5836

S.T. Weir, Y.K. Vohra, A.L. Ruoff. Pressure-induced metallization of BaSe. Phys. Rev. B 35, 874 (1987). https://doi.org/10.1103/PhysRevB.35.874

S.-H. Wei, H. Krakauer. Local-density-functional calculation of the pressure-induced metallization of BaSe and BaTe. Phys. Rev. Lett. 55, 1200 (1985). https://doi.org/10.1103/PhysRevLett.55.1200

K. Syassen, N.E. Christensen, H. Winzen, K. Fischer, J. Evers. Optical response and band-structure calculations of alkaline-earth tellurides under pressure. Phys. Rev. B 35, 4052 (1987). https://doi.org/10.1103/PhysRevB.35.4052

H. Akbarzadeh, M. Dadsetani, M. Mehrani. Electronic and structural properties of BaTe Comp. Mater. Sci. 17, 81 (2000). https://doi.org/10.1016/S0927-0256(99)00091-9

Published

2020-11-12

How to Cite

Pozhivatenko, V. (2020). Ionic Character, Phase Transitions, and Metallization in Alkaline-Earth Metal Oxides and Chalcogenides under Pressure. Ukrainian Journal of Physics, 65(11), 1022. https://doi.org/10.15407/ujpe65.11.1022

Issue

Section

Semiconductors and dielectrics