Charged Particle Pseudorapidity Distributions for Pb–Pb and Au–Au Collisions using Neural Network Model

Authors

  • M. Y. El-Bakry Department of Physics, Faculty of Education, Ain Shams University, Buraydah Tabouk University, Faculty of Science, Department of Physics
  • El-Sayed A. El-Dahshan Dept. of Phys., Faculty of Science, Ain Shams University, Egyptian E-Learning University
  • E. F. Abd El-Hamied Department of Physics, Faculty of Education, Ain Shams University

DOI:

https://doi.org/10.15407/ujpe58.08.0709

Keywords:

charged particles, neural network, pseudorapidity distribution, Pb–Pb and Au–Au collisions, simulation

Abstract

The artificial neural network (ANN) approach is used to model the Pb–Pb and Au–Au collisions on the basis of the Levenberg–Marquardt learning algorithm. We simulate the rapidity distribution for п- and к+- produced in Pb–Pb collisions at different energies and the pseudorapidity distribution of charged particles in Au–Au collisions. Our functions obtained within the ANN model show a very good agreement with the experimental data for both types of collisions, which indicates that the trained network takes on the optimal generalization performance. Thus, the ANN model can be widely applied to the modeling of heavy-ion collisions.

References

<ol>

<li> M. Mitrovski, T. Schuster, G. Gr¨af, H. Petersen, and M. Bleicher, arXiv: nucl-th/ 08122041.
</li>
<li> F.H. Liu, Chin. J. Phys. 38, 42 (2000).
</li>
<li> C.R. Meng, Chin. Phys. Lett. 26, 102501 (2009).
&nbsp;<a href="https://doi.org/10.1088/0256-307X/26/1/018501">https://doi.org/10.1088/0256-307X/26/1/018501</a>
</li>
<li> F.H. Liu, Jain-Xin Sun, and Er-Qin Wang, Chin. Phys. Lett. 27, 032503 (2010).
</li>
<li> K. Werner, Phys. Rep. 232, 87 (1995).
&nbsp;<a href="https://doi.org/10.1016/0370-1573(93)90078-R">https://doi.org/10.1016/0370-1573(93)90078-R</a>
</li>
<li> G.D. Westfall et al., Phys. Rev. Lett. 37, 1202 (1976).
&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.37.1202">https://doi.org/10.1103/PhysRevLett.37.1202</a>
</li>
<li> F.H. Liu, Acta Phys. Sin. 7, 321 (1998).
</li>
<li> F.H. Liu and Y.A. Panebratsev, Nucl. Phys. A 641, 379 (1998).
&nbsp;<a href="https://doi.org/10.1016/S0375-9474(98)00475-8">https://doi.org/10.1016/S0375-9474(98)00475-8</a>
</li>
<li> F.H. Liu and Y.A. Panebratsev, Phys. Rev. C 59, 1193 (1999).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.59.1193">https://doi.org/10.1103/PhysRevC.59.1193</a>
</li>
<li> F.H. Liu and Y.A. Panebratsev, Phys. Rev. C textbf59, 1798 (1999).
</li>
<li> F.H. Liu, Phys. Lett. B 583, 68 (2004).
&nbsp;<a href="https://doi.org/10.1016/j.physletb.2003.12.059">https://doi.org/10.1016/j.physletb.2003.12.059</a>
</li>
<li> F.H. Liu, D.H. Zhang, and M.Y. Duan, Europhys. Lett. 61, 736 (2003).
&nbsp;<a href="https://doi.org/10.1209/epl/i2003-00290-6">https://doi.org/10.1209/epl/i2003-00290-6</a>
</li>
<li> F.H. Liu, X.Y. Yin, J.L. Tian, and N.N. Abd Allah, Phys. Rev. C 69, 034905 (2004).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.69.034905">https://doi.org/10.1103/PhysRevC.69.034905</a>
</li>
<li> A.B. Kaidalov, Phys. Lett. B 116, 459 (1982).
&nbsp;<a href="https://doi.org/10.1016/0370-2693(82)90168-X">https://doi.org/10.1016/0370-2693(82)90168-X</a>
</li>
<li> A.B. Kaidalov and K.A. Ter-Martirosyan, Phys. Lett. B 117, 247 (1982).
&nbsp;<a href="https://doi.org/10.1016/0370-2693(82)90556-1">https://doi.org/10.1016/0370-2693(82)90556-1</a>
</li>
<li> N.S. Amelin et al., Phys. Rev. C47, 2299 (1993).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.47.2299">https://doi.org/10.1103/PhysRevC.47.2299</a>
</li>
<li> G. Burau et al., Phys. Rev. C 71, 054905 (2005).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.71.054905">https://doi.org/10.1103/PhysRevC.71.054905</a>
</li>
<li> E.E. Zabrodin et al., J. Phys. G 31, S995 (2005).
&nbsp;<a href="https://doi.org/10.1088/0954-3899/31/6/045">https://doi.org/10.1088/0954-3899/31/6/045</a>
</li>
<li> J. Dias de Deus and J.G. Milhano, Nucl. Phys. A 795, 8 (2007).
&nbsp;<a href="https://doi.org/10.1016/j.nuclphysa.2007.08.007">https://doi.org/10.1016/j.nuclphysa.2007.08.007</a>
</li>
<li> X.N. Wang, Phys. Rev. D 43, 104 (1991).
&nbsp;<a href="https://doi.org/10.1103/PhysRevD.43.104">https://doi.org/10.1103/PhysRevD.43.104</a>
</li>
<li> X.N. Wang and M. Gyulassy, Phys. Rev. D 44, 3501 (1991).
&nbsp;<a href="https://doi.org/10.1103/PhysRevD.44.3501">https://doi.org/10.1103/PhysRevD.44.3501</a>
</li>
<li> X.N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).
&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.68.1480">https://doi.org/10.1103/PhysRevLett.68.1480</a>
</li>
<li> B.A. Li and C.M. Ko, Phys. Rev. C 52, 2037 (1995).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.52.2037">https://doi.org/10.1103/PhysRevC.52.2037</a>
</li>
<li> B. Zhang, Comput. Phys. Commun. 109, 193 (1998).
&nbsp;<a href="https://doi.org/10.1016/S0010-4655(98)00010-1">https://doi.org/10.1016/S0010-4655(98)00010-1</a>
</li>
<li> D. Kharzeev, E. Levin, and L. McLerran, Phys. Lett. B 561, 93 (2003).
&nbsp;<a href="https://doi.org/10.1016/S0370-2693(03)00420-9">https://doi.org/10.1016/S0370-2693(03)00420-9</a>
</li>
<li> H. Sorge, H. Stocker, and W. Greiner, Nucl. Phys. A 498, 567 (1989).
&nbsp;<a href="https://doi.org/10.1016/0375-9474(89)90641-6">https://doi.org/10.1016/0375-9474(89)90641-6</a>
</li>
<li> H. Sorge, A. von Keitz, R. Mattiello, H. Stocker, and W. Greiner, Nucl. Phys. A 525, 95 (1991).
&nbsp;<a href="https://doi.org/10.1016/0375-9474(91)90317-Y">https://doi.org/10.1016/0375-9474(91)90317-Y</a>
</li>
<li> A. Jahns et al., Nucl. Phys. A 566, 483 (1994).
&nbsp;<a href="https://doi.org/10.1016/0375-9474(94)90674-2">https://doi.org/10.1016/0375-9474(94)90674-2</a>
</li>
<li> K. Tywoniuk et al., Phys. Lett. B 657, 170 (2007).
&nbsp;<a href="https://doi.org/10.1016/j.physletb.2007.09.065">https://doi.org/10.1016/j.physletb.2007.09.065</a>
</li>
<li> R.B. Clare and D. Strottmann, hys. Rep. 141, 177 (1986).
&nbsp;<a href="https://doi.org/10.1016/0370-1573(86)90090-6">https://doi.org/10.1016/0370-1573(86)90090-6</a>
</li>
<li> U. Ornik, R.M. Weiner, and G. Wilk, Nucl. Phys. A 566, 469 (1994).
&nbsp;<a href="https://doi.org/10.1016/0375-9474(94)90671-8">https://doi.org/10.1016/0375-9474(94)90671-8</a>
</li>
<li> Y. Pang, T.J. Schlagel, and S.H. Kahana, Nucl. Phys. A 544, 453 (1992).
&nbsp;<a href="https://doi.org/10.1016/0375-9474(92)90592-8">https://doi.org/10.1016/0375-9474(92)90592-8</a>
</li>
<li> Y. Pang, T.J. Schlagel, and S.H. Kahana, Phys. Rev. Lett. 68, 2743 (1992).
&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.68.2743">https://doi.org/10.1103/PhysRevLett.68.2743</a>
</li>
<li> S.H. Kahana, T.J. Schlagel, and Y. Pang, Nucl. Phys. A 566, 465 (1994).
&nbsp;<a href="https://doi.org/10.1016/0375-9474(94)90670-X">https://doi.org/10.1016/0375-9474(94)90670-X</a>
</li>
<li> A.K. Hamid, Can J. Phys. 76-63-7 (1998).
</li>
<li> P. Bhatet et al., Proceedings of the Summer Study on HEP, Snowmass, Colorado, 1990.
</li>
<li> R.P. Lippman, IEEE Acoust. Speech Signal Process. Mag., No. 4, 4-22 (1987).
</li>
<li> M.Y. El-Bakry and K.A. El-Metwally, Solit. Fract. 16, 279 (2003).
&nbsp;<a href="https://doi.org/10.1016/S0960-0779(02)00318-1">https://doi.org/10.1016/S0960-0779(02)00318-1</a>
</li>
<li> S.V. Afanasiev et al., Phys. Rev. C 66, 054902 (2002); [arXiv:nucl-ex/0205002].
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.66.054902">https://doi.org/10.1103/PhysRevC.66.054902</a>
</li>
<li> M. Ga'zdzicki, C. Alt et al., J. Phys. G 30, S119 (2004); [arXiv:nucl-ex/0403023].
&nbsp;<a href="https://doi.org/10.1088/0954-3899/30/1/011">https://doi.org/10.1088/0954-3899/30/1/011</a>
</li>
<li> C. Alt et al., [NA49 Collaboration], Phys. Rev. C 77, 024903 (2008).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.77.024903">https://doi.org/10.1103/PhysRevC.77.024903</a>
</li>
<li> B. Alver et al., arXiv: 0709.4008 [nucl-ex].
</li>
<li> B.B. Back et al., Phys. Rev. C 74, 021901 (2006).
&nbsp;<a href="https://doi.org/10.1103/PhysRevC.74.021901">https://doi.org/10.1103/PhysRevC.74.021901</a>
</li>
<li> M.C. Abreu et al., Phys. Lett. B 530, 43 (2002).
&nbsp;<a href="https://doi.org/10.1016/S0370-2693(02)01353-9">https://doi.org/10.1016/S0370-2693(02)01353-9</a>
</li>
<li> K. Metaxiotis, Intelligent Information Systems and Knowledge Management for Energy: Applications for Decision Support, Usage, and Environmental Protection (Nat. Techn. Univ. of Athens, Athens, 2010).
&nbsp;<a href="https://doi.org/10.4018/978-1-60566-737-9">https://doi.org/10.4018/978-1-60566-737-9</a>
</li>
<li> M.Y. El-Bakry, A.M. Basha, N. Rashed, A. Radi, and M.A. Mahmoud, 6 th Conference on Nuclear and Particle Physics, Luxor, Egypt, November 17–21, 2007.
</li>
<li> S. Haykin, Neural Network: A Comprehensive Foundation (Pearson Education, Upper Saddle River, NJ, 2005).
</li>
<li> E. El-Dahshan, A. Radi, M. Y. El-Bakry, and M. ElMashad, 6th Conference on Nuclear Particle Physics, Luxor, Egypt, November 17–21, 2007.
</li>
<li> F.M. Dias et al., Eng. App. of Artif. Intell. 19, 1 (2006).
&nbsp;<a href="https://doi.org/10.1016/j.engappai.2005.03.005">https://doi.org/10.1016/j.engappai.2005.03.005</a>
</li>
<li> M.T. Hagan and M.B. Menhaj, IEEE Trans. on Neural Networks 6, 861 (1994).
</li>

</ol>

Downloads

Published

2018-10-10

How to Cite

El-Bakry, M. Y., El-Dahshan, E.-S. A., & Abd El-Hamied, E. F. (2018). Charged Particle Pseudorapidity Distributions for Pb–Pb and Au–Au Collisions using Neural Network Model. Ukrainian Journal of Physics, 58(8), 709. https://doi.org/10.15407/ujpe58.08.0709

Issue

Section

Nuclei and nuclear reactions