Momentum Diffusion of Atoms and Nanoparticles in an Optical Trap Formed by Sequences of Counter-Propagating Light Pulses

Authors

  • V. I. Romanenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. V. Romanenko Taras Shevchenko National University of Kyiv
  • Ye. G. Udovitskaya Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • L. P. Yatsenko Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe58.05.0438

Keywords:

light pressure force, counter-propagating pulses, trap, nanoparticles, Monte Carlo wave function approach

Abstract

The motion of atoms and nanoparticles in a trap formed by sequences of counter-propagating light pulses has been analyzed. The atomic state is described by a wave function constructed with the use of the Monte Carlo method, whereas the atomic motion is considered in the framework of classical mechanics. The effects of the momentum diffusion associated with the spontaneous radiation emission by excited atoms and the pulsed character of the atom-to-field interaction on the motion of a trapped atom or nanoparticle are estimated. The motion of a trapped atom is shown to be slowed down for properly chosen parameters of the atom-to-field interaction, so that the atom oscillates around the antinodes of a non-stationary standing wave formed by counter-propagating light pulses at the point where they “collide”.

References

<ol>
<li> V.G. Minogin and V.S. Letokhov, Laser Light Pressure on Atoms (Gordon and Breach, New York, 1987).</li>
<li> A.P. Kazantsev, G.I. Surdutovich, and V.P. Yakovlev, Mechanical Action of Light on Atoms (World Scientific, Singapore, 1990).</li>
<li> B.D. Pavlik, Cold and Ultracold Atoms (Naukova Dumka, Kiev, 1993) (in Russian).</li>
<li> H.J. Metcalf and P. van der Stratten, Laser Cooling and Trapping (Springer, Berlin, 1999).</li>
<li> S. Chu, Rev. Mod. Phys. 70, 685 (1998).&nbsp;<a href="https://doi.org/10.1103/RevModPhys.70.685">https://doi.org/10.1103/RevModPhys.70.685</a></li>
<li> C.N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998).&nbsp;<a href="https://doi.org/10.1103/RevModPhys.70.707">https://doi.org/10.1103/RevModPhys.70.707</a></li>
<li> W.D. Phillips, Rev. Mod. Phys. 70, 721 (1998).&nbsp;<a href="https://doi.org/10.1103/RevModPhys.70.721">https://doi.org/10.1103/RevModPhys.70.721</a></li>
<li> V.I. Balykin, V.G. Minogin, and V.S. Letokhov, Rep. Prog. Phys. 63, 1429 (2000).&nbsp;<a href="https://doi.org/10.1088/0034-4885/63/9/202">https://doi.org/10.1088/0034-4885/63/9/202</a></li>
<li> T.G.M. Freegarde, J. Waltz, and W. H¨ansch, Opt. Commun. 117, 262 (1995).&nbsp;<a href="https://doi.org/10.1016/0030-4018(95)00172-5">https://doi.org/10.1016/0030-4018(95)00172-5</a></li>
<li> A. Goepfert, I. Bloch, D. Haubrich, F. Lison, R. Sch¨utze, R. Wynands, and D. Meshede, Phys. Rev. A 56, R3345 (1997).&nbsp;<a href="https://doi.org/10.1103/PhysRevA.56.R3354">https://doi.org/10.1103/PhysRevA.56.R3354</a></li>
<li> V.I. Balykin, JETP Lett. 81, 206 (2005).&nbsp;<a href="https://doi.org/10.1134/1.1921317">https://doi.org/10.1134/1.1921317</a></li>
<li> V.I. Romanenko and L.P. Yatsenko, J. Phys. B 44, 115305 (2011).&nbsp;<a href="https://doi.org/10.1088/0953-4075/44/11/115305">https://doi.org/10.1088/0953-4075/44/11/115305</a></li>
<li> V.I. Romanenko and L.P. Yatsenko, Ukr. Fiz. Zh. 57, 893 (2012).</li>
<li> A.P. Kazantsev, Sov. Phys. JETP 39 784 (1974).</li>
<li> V.S. Voitsekhovich, M.V. Danileiko, A.M. Negriyko, V.I. Romanenko, L.P. Yatsenko, Zh. Eksp. Teor. Fiz. ` 99, 393 (1991).</li>
<li> A.M. Negriyko, V.I. Romanenko, and L.P. Yatsenko, Dynamics of Atoms and Molecules in Coherent Laser Fields (Naukova Dumka, Kyiv, 2008) (in Ukrainian).</li>
<li> V.S. Letokhov, V.G. Minogin, B.D. Pavlik, Opt. Commun. 19, 72 (1976).&nbsp;<a href="https://doi.org/10.1016/0030-4018(76)90388-6">https://doi.org/10.1016/0030-4018(76)90388-6</a></li>
<li> V.S. Letokhov, V.G. Minogin, and B.D. Pavlik, Sov. Phys. JETP 45, 698 (1977).</li>
<li> K. Mølmer, Phys. Rev. Lett. 66, 2301 (1991).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.66.2301">https://doi.org/10.1103/PhysRevLett.66.2301</a></li>
<li> C. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993).&nbsp;<a href="https://doi.org/10.1364/JOSAB.10.000524">https://doi.org/10.1364/JOSAB.10.000524</a></li>
<li> K. Bergmann, H. Theur, and B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998).&nbsp;<a href="https://doi.org/10.1103/RevModPhys.70.1003">https://doi.org/10.1103/RevModPhys.70.1003</a></li>
<li> N.V. Vitanov, T. Halfmann, B.W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).&nbsp;<a href="https://doi.org/10.1146/annurev.physchem.52.1.763">https://doi.org/10.1146/annurev.physchem.52.1.763</a></li>
<li> V.I. Romanenko, Ukr. J. Phys. 51, 1054 (2006).</li>
<li> B.W. Shore, The Theory of Coherent Atomic Excitation, Vol. 1: Simple Atoms and Fields (Wiley, New York, 1990).</li>
<li> I.M. Sobol, The Monte Carlo Method (Univ. of Chicago Press, Chicago, IL, 1974).</li>
<li> E. Peik and Ch. Tamm, Europhys. Lett. 61, 181 (2003).&nbsp;<a href="https://doi.org/10.1209/epl/i2003-00210-x">https://doi.org/10.1209/epl/i2003-00210-x</a></li>
<li> E. Peik, K. Zimmermann, M. Okhapkin, and Ch. Tamm, in Proceedings of the 7th Symposium on Frequency Standards and Metrology, edited by L. Maleki (World Scientific, Singapore, 2009), p. 532.&nbsp;<a href="https://doi.org/10.1142/9789812838223_0067">https://doi.org/10.1142/9789812838223_0067</a></li>
</ol>

Published

2018-10-06

How to Cite

Romanenko, V. I., Romanenko, A. V., Udovitskaya, Y. G., & Yatsenko, L. P. (2018). Momentum Diffusion of Atoms and Nanoparticles in an Optical Trap Formed by Sequences of Counter-Propagating Light Pulses. Ukrainian Journal of Physics, 58(5), 438. https://doi.org/10.15407/ujpe58.05.0438

Issue

Section

Optics, lasers, and quantum electronics