Spatial Distribution of Atoms in the Field of Intersecting Standing Bichromatic Light Waves

  • V. I. Romanenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • N. V. Kornilovska Kherson National Technical University
  • O. G. Udovytska Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • L. P. Yatsenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
Keywords: optical atomic trap, standing waves, Monte Carlo wave function approach

Abstract

We have shown that, by properly detuning the carrier frequencies in each of two perpendicularly intersecting bichromatic waves from the atomic transition frequency, it is possible to create a two-dimensional trap for atoms, if the wave intensities are sufficiently high. At the zero and near-zero values of the initial wave phases, as well as at the phase shift between the intersecting waves equal to п or close to п values, the dynamic spatial patterns of atoms consisting of square cells with the side length equal to л/√2 are formed. Numerical simulations were carried out for sodium atoms.

References

H. J. Metcalf, P. van der Stratten. Laser Cooling and Trapping (Springer, 1999).

A.M. Negriyko, V.I. Romanenko, L.P. Yatsenko. Dynamics of Atoms and Molecules in Coherent Laser Fields (Naukova Dumka, 2008) (in Ukrainian).

H. Metcalf. Strong optical forces on atoms in multifrequency light. Rev. Mod. Phys. 89, 041001 (2017). https://doi.org/10.1103/RevModPhys.89.041001

V.S. Voitsekhovich, M.V. Danileiko, A.N. Negriiko, V.I. Romanenko, L.P. Yatsenko. Light pressure on atoms in counterpropagating amplitude-modulated waves. Zh. Tekhn. Fiz. 58, 1174 (1988) (in Russian).

A.P. Kazantsev, I.V. Krasnov. Rectification effect of a radiation force. J. Opt. Soc. Am. B 6, 2140 (1989). https://doi.org/10.1364/JOSAB.6.002140

V.S. Voitsekhovich, M.V. Danileiko, A.N. Negriiko, V.I. Romanenko, L.P. Yatsenko. Observation of a stimulated radiation pressure of amplitude-modulated light on atoms. JETP Lett. 49, 161 (1989).

R. Grimm, Y.B. Ovchinnikov, A.I. Sidorov, V. S. Letokhov. Observation of a strong rectified dipole force in a bichromatic standing light wave. Phys. Rev. Lett. 65, 1415 (1990). https://doi.org/10.1103/PhysRevLett.65.1415

Y.B. Ovchinnikov, R. Grimm, A.I. Sidorov, V.S. Letokhov. Recified dipole force in a bichromatic standing light wave. Opt. Commun. 102, 155 (1993). https://doi.org/10.1016/0030-4018(93)90486-O

J. S?oding, R. Grimm, Y. Ovchinnikov, P. Bouyer, C. Salomon. Short-distance atomic beam deceleration with a stimulated light force. Phys. Rev. Lett. 78, 1420 (1997). https://doi.org/10.1103/PhysRevLett.78.1420

M.R. Williams, F. Chi, M.T. Cashen, H. Metcalf. Bichromatic force measurements using atomic beam deflections. Phys. Rev. A 61, 023408 (2000). https://doi.org/10.1103/PhysRevA.61.023408

M.T. Cashen, H. Metcalf. Bichromatic force on helium. Phys. Rev. A 63, 025406 (2001). https://doi.org/10.1103/PhysRevA.63.025406

C. Corder, B. Arnold, H. Metcalf. Laser cooling without spontaneous emission. Phys. Rev. Lett. 114, 043002 (2015). https://doi.org/10.1103/PhysRevLett.114.043002

C. Corder, B. Arnold, X. Hua, H. Metcalf. Laser cooling without spontaneous emission using the bichromatic force. J. Opt. Soc. Am. B 32, B75 (2015). https://doi.org/10.1364/JOSAB.32.000B75

H. Metcalf. Entropy exchange in laser cooling. Phys. Rev. A 77, 061401 (2008). https://doi.org/10.1103/PhysRevA.77.061401

T.G.M. Freegarde, J. Waltz, W. H?ansch. Confinement and manipulation of atoms using short laser pulses. Opt. Commun. 117, 262 (1995). https://doi.org/10.1016/0030-4018(95)00172-5

A. Goepfert, I. Bloch, D. Haubrich, F. Lison, R. Sch?utze, R. Wynands, D. Meschede. Stimulated focusing and deflection of an atomic beam using picosecond laser pulses. Phys. Rev. A 56, R3354 (1997). https://doi.org/10.1103/PhysRevA.56.R3354

V.I. Romanenko, L.P. Yatsenko. Theory of one-dimensional trapping of atoms by counterpropagating short pulse trains. J. Phys. B 44, 115305 (2011). https://doi.org/10.1088/0953-4075/44/11/115305

V. I. Romanenko, Ye.G. Udovitskaya, A.V. Romanenko, L.P. Yatsenko. Cooling and trapping of atoms and molecules by counterpropagating pulse trains. Phys. Rev. A 90, 053421 (2014). https://doi.org/10.1103/PhysRevA.90.053421

V.I. Romanenko, A.V. Romanenko, L.P. Yatsenko. An optical trap for atoms on the basis of counter-propagating bichromatic light waves. Ukr. J. Phys. 61, 309 (2016). https://doi.org/10.15407/ujpe61.04.0309

V.I. Romanenko, L.P. Yatsenko. Trapping of atoms by the counter-propagating stochastic light waves. Opt. Commun. 392, 239 (2017). https://doi.org/10.1016/j.optcom.2017.01.053

V.I. Romanenko, N.V. Kornilovska. Atoms in the counter-propagating frequency-modulated waves: splitting, cooling, confinement. Eur. Phys. J. D 71, 229 (2017). https://doi.org/10.1140/epjd/e2017-80109-7

C. Molmer, Y. Castin, J. Dalibard. Monte Carlo wave-function method in quantum optics. J. Opt. Soc. Am. B 10, 524 (1993). https://doi.org/10.1364/JOSAB.10.000524

L. Yatsenko, H. Metcalf. Dressed-atom description of the bichromatic force. Phys. Rev. A 70, 063402 (2004). https://doi.org/10.1103/PhysRevA.70.063402

A.P. Kazantsev. Acceleration of atoms by light. Zh. ? Eksp. Teor. Fiz. 66, 1599 (1974).

V.G. Minogin, V.S. Letokhov. Laser Light Pressure on Atoms (Gordon and Breach, 1987).

J. Steinbach, B.M. Garraway, P.L. Knight. High-order unraveling of master equations for dissipative evolution. Phys. Rev. A 51, 3302 (1995). https://doi.org/10.1103/PhysRevA.51.3302

B.W. Shore. The Theory of Coherent Atomic Excitation, Vol. 1 (Wiley, 1990).

K. Molmer. Limits of Doppler cooling in pulsed laser fields. Phys. Rev. Lett. 66, 2301 (1991). https://doi.org/10.1103/PhysRevLett.66.2301

V.I. Romanenko, O.G. Udovytska, V.M. Khodakovsky, L.P. Yatsenko. Atomic momentum diffusion in the field of counter-propagating stochastic light waves. Ukr. J. Phys. 63, 616 (2018). https://doi.org/10.15407/ujpe63.7.616

Published
2019-02-21
How to Cite
Romanenko, V., Kornilovska, N., Udovytska, O., & Yatsenko, L. (2019). Spatial Distribution of Atoms in the Field of Intersecting Standing Bichromatic Light Waves. Ukrainian Journal of Physics, 64(2), 109. https://doi.org/10.15407/ujpe64.2.109
Section
Optics, atoms and molecules