Temperature Effects on the Surface Plasmon Resonance in Copper Nanoparticles

Authors

  • O. A. Yeshchenko Faculty of Physics, Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe58.03.0249

Keywords:

surface plasmon resonance, copper nanoparticles, temperature-induced effects

Abstract

The temperature dependences of the energy and the width of a surface plasmon resonance are studied for copper nanoparticles 17–59 nm in size in the silica host matrix in the temperature interval 293–460 K. An increase of the temperature leads to the red shift and the broadening of the surface plasmon resonance in Cu nanoparticles. The obtained dependences are analyzed within the framework of a theoretical model considering the thermal expansion of a nanoparticle, the electron-phonon scattering in a nanoparticle, and the temperature dependence of the dielectric permittivity of the host matrix. The thermal expansion is shown to be the main mechanism responsible for the temperature-induced red shift of the surface plasmon resonance in copper nanoparticles. The thermal volume expansion coefficient for Cu nanoparticles is found to be size-independent in the studied size range. Meanwhile, the increase of the electron-phonon scattering rate with the temperature is shown to be the dominant mechanism of the surface plasmon resonance broadening in copper nanoparticles.

References

<ol>
<li> U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995). C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Chichester, 1998).</li>
<li> B.G. Ershov, E. Janata, A. Henglein, and A. Fojtik, J Phys. Chem. 97, 4589 (1993).&nbsp;<a href="https://doi.org/10.1021/j100120a006">https://doi.org/10.1021/j100120a006</a></li>
<li> A. Henglein, J. Phys. Chem. 97, 5457 (1993).&nbsp;<a href="https://doi.org/10.1021/j100123a004">https://doi.org/10.1021/j100123a004</a></li>
<li> A. Barhoumi, D. Zhang, F. Tam, and N. Halas, J. Am. Chem. Soc. 130, 5523 (2008).&nbsp;<a href="https://doi.org/10.1021/ja800023j">https://doi.org/10.1021/ja800023j</a></li>
<li> F. Le, D. Brandl, Y. Urzhumov, H. Wang, J. Kundu, N. Halas, J. Aizpurua, and P. Nordlander, ACS Nano 2, 707 (2008).&nbsp;<a href="https://doi.org/10.1021/nn800047e">https://doi.org/10.1021/nn800047e</a></li>
<li> G. Laurent, N. Felidj, J. Grand, J. Aubard, G. Levi, A. Hohenau, J. Krenn, and F. Aussenegg, J. of Microsc.-Oxford 229, 189 (2008).</li>
<li> R. Bakker, H. Yuan, Z. Liu, V. Drachev, A. Kildishev, V. Shalaev, R. Pedersen, S. Gresillon, and A. Boltasseva, Appl. Phys. Lett. 92, 043101 (2008).&nbsp;<a href="https://doi.org/10.1063/1.2836271">https://doi.org/10.1063/1.2836271</a></li>
<li> G. Gay, B. de Lesegno, R. Mathevet, J. Weiner, H. Lezec, and T. Ebbesen, Appl. Phys. B 81, 871 (2005).&nbsp;<a href="https://doi.org/10.1007/s00340-005-2016-x">https://doi.org/10.1007/s00340-005-2016-x</a></li>
<li> O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, M.Yu. Losytskyy, A.V. Kotko, and A.O. Pinchuk, Phys. Rev. B 79, 235438 (2009).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.79.235438">https://doi.org/10.1103/PhysRevB.79.235438</a></li>
<li> A. Gobin, M. Lee, R. Drezek, N. Halas, and J. West, Clin. Cancer Res. 11, 9095S (2005).</li>
<li> C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, and P. Royer, Nano Lett. 5, 615 (2005).&nbsp;<a href="https://doi.org/10.1021/nl047956i">https://doi.org/10.1021/nl047956i</a></li>
<li> K. Kandere-Grzybowska, C. Campbell, Y. Komarova, B. Grzybowski, and G. Borisy, Nature Methods 2, 739 (2005).&nbsp;<a href="https://doi.org/10.1038/nmeth796">https://doi.org/10.1038/nmeth796</a></li>
<li> M. Choi, K.J. Stanton-Maxey, J.K. Stanley, C.S. Levin, R. Bardhan, D. Akin, S. Badve, J. Sturgis, J.P. Robinson, R. Bashir, N.J. Halas, and S.E. Clare, Nano Lett. 7, 3759 (2007).&nbsp;<a href="https://doi.org/10.1021/nl072209h">https://doi.org/10.1021/nl072209h</a></li>
<li> L. Hirsch, A. Gobin, A. Lowery, F. Tam, R. Drezek, N. Halas, and J. West, Annals Biomed. Engineering 34, 15 (2006).&nbsp;<a href="https://doi.org/10.1007/s10439-005-9001-8">https://doi.org/10.1007/s10439-005-9001-8</a></li>
<li> D. O'Neal, L. Hirsch, N. Halas, J. Payne, and J. West, Cancer Lett. 209, 171 (2004).&nbsp;<a href="https://doi.org/10.1016/j.canlet.2004.02.004">https://doi.org/10.1016/j.canlet.2004.02.004</a></li>
<li> D. Citrin, Nano Lett. 5, 985 (2005).&nbsp;<a href="https://doi.org/10.1021/nl050513+">https://doi.org/10.1021/nl050513+</a></li>
<li> J. Jung, T. Sondergaard, and S. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.76.035434">https://doi.org/10.1103/PhysRevB.76.035434</a></li>
<li> K. Leosson, T. Nikolajsen, A. Boltasseva, and S. Bozhevolnyi, Opt. Express 14, 314 (2006).&nbsp;<a href="https://doi.org/10.1364/OPEX.14.000314">https://doi.org/10.1364/OPEX.14.000314</a></li>
<li> B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, Appl. Phys. Lett. 88, 094104 (2006).&nbsp;<a href="https://doi.org/10.1063/1.2180448">https://doi.org/10.1063/1.2180448</a></li>
<li> J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).&nbsp;<a href="https://doi.org/10.1364/OL.22.000475">https://doi.org/10.1364/OL.22.000475</a></li>
<li> U. Kreibig, Appl. Phys. B 93, 79 (2008).&nbsp;<a href="https://doi.org/10.1007/s00340-008-3213-1">https://doi.org/10.1007/s00340-008-3213-1</a></li>
<li> W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X.M. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, and E.C. Gage, Nature Photon. 3, 303 (2009).&nbsp;<a href="https://doi.org/10.1038/nphoton.2009.71">https://doi.org/10.1038/nphoton.2009.71</a></li>
<li> L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, and J.L. West, Proc. Natl. Acad. Sci. USA 100, 13549 (2003).&nbsp;<a href="https://doi.org/10.1073/pnas.2232479100">https://doi.org/10.1073/pnas.2232479100</a></li>
<li> A. Lowery, A. Gobin, E. Day, N. Halas, and J. West, Breast Cancer Res. Treat. 100, S289 (2006).</li>
<li> A. Lowery, A. Gobin, E. Day, N. Halas, and J. West, Int. J. Nanomed. 1, 149 (2006).&nbsp;<a href="https://doi.org/10.2147/nano.2006.1.2.149">https://doi.org/10.2147/nano.2006.1.2.149</a></li>
<li> L. Cao, D.N. Barsic, A.R. Guichard, and M.L. Brongersma, Nano Lett. 7, 3523 (2007).&nbsp;<a href="https://doi.org/10.1021/nl0722370">https://doi.org/10.1021/nl0722370</a></li>
<li> W. Cai, J.S. White, and M.L. Brongersma, Nano Lett. 9, 4403 (2009).&nbsp;<a href="https://doi.org/10.1021/nl902701b">https://doi.org/10.1021/nl902701b</a></li>
<li> U. Kreibig, J. Phys. F 4, 999 (1974).&nbsp;<a href="https://doi.org/10.1088/0305-4608/4/7/007">https://doi.org/10.1088/0305-4608/4/7/007</a></li>
<li> R.H. Doremus, J. Chem. Phys. 40, 2389 (1964).&nbsp;<a href="https://doi.org/10.1063/1.1725519">https://doi.org/10.1063/1.1725519</a></li>
<li> R.H. Doremus, J. Chem. Phys. 42, 414 (1965).&nbsp;<a href="https://doi.org/10.1063/1.1695709">https://doi.org/10.1063/1.1695709</a></li>
<li> P. Mulvaney, in Nanoscale Materials in Chemistry, edited by K.J. Klabunde (Wiley, New York, 2001), p. 121.&nbsp;<a href="https://doi.org/10.1002/0471220620.ch5">https://doi.org/10.1002/0471220620.ch5</a></li>
<li> J.-S.G. Bouillard, W. Dickson, D.P. O'Connor, G.A. Wurtz, and A.V. Zayats, Nano Lett. 12, 1561 (2012).&nbsp;<a href="https://doi.org/10.1021/nl204420s">https://doi.org/10.1021/nl204420s</a></li>
<li> D.Yu. Fedyanin, A.V. Krasavin, A.V. Arsenin, and A.V. Zayats, Nano Lett. 12, 2459 (2012).&nbsp;<a href="https://doi.org/10.1021/nl300540x">https://doi.org/10.1021/nl300540x</a></li>
<li> S. Link and M.A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999).&nbsp;<a href="https://doi.org/10.1021/jp984796o">https://doi.org/10.1021/jp984796o</a></li>
<li> O.A. Yeshchenko, I. M. Dmitruk, A.A. Alexeenko, A.V. Kotko, J. Verdal, and A.O. Pinchuk, Plasmonics 7, 685 (2012).&nbsp;<a href="https://doi.org/10.1007/s11468-012-9359-z">https://doi.org/10.1007/s11468-012-9359-z</a></li>
<li> U. Kreibig and U. Genzel, Surf. Sci. 156, 678 (1985).&nbsp;<a href="https://doi.org/10.1016/0039-6028(85)90239-0">https://doi.org/10.1016/0039-6028(85)90239-0</a></li>
<li> S. Link and M. El-Sayed, J. Phys. Chem. B 103, 8410 (1999).&nbsp;<a href="https://doi.org/10.1021/jp9917648">https://doi.org/10.1021/jp9917648</a></li>
<li> C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005).</li>
<li> N.I. Grigorchuk and P.M. Tomchuk, Phys. Rev. B 84 085448 (2011).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.84.085448">https://doi.org/10.1103/PhysRevB.84.085448</a></li>
<li> K. Ujihara, J Appl. Phys. 43, 2374 (1972).&nbsp;<a href="https://doi.org/10.1063/1.1661506">https://doi.org/10.1063/1.1661506</a></li>
<li> N.W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).</li>
<li> R.H. Bube, Electrons in Solids: An Introductory Survey (Academic Press, London, 1992).</li>
<li> Z. Li-Jun, G. Jian-Gang, and Z. Ya-Pu, Chin. Phys. Lett. 26, 066201 (2009).&nbsp;<a href="https://doi.org/10.1088/0256-307X/26/6/066201">https://doi.org/10.1088/0256-307X/26/6/066201</a></li>
<li> J.H. Wray and J.T. Neu, J. Opt. Soc. Am. 59, 774 (1969).&nbsp;<a href="https://doi.org/10.1364/JOSA.59.000774">https://doi.org/10.1364/JOSA.59.000774</a></li>
<li> P.B. Johnson and R.W. Christy, Phys. Rev. B 6, 4370 (1972).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.6.4370">https://doi.org/10.1103/PhysRevB.6.4370</a></li>
<li> R.C. Lincoln, K.M. Koliwad, and P.B. Ghate, Phys. Rev. 157, 463 (1967).&nbsp;<a href="https://doi.org/10.1103/PhysRev.157.463">https://doi.org/10.1103/PhysRev.157.463</a></li>
</ol>

Downloads

Published

2018-10-06

How to Cite

Yeshchenko, O. A. (2018). Temperature Effects on the Surface Plasmon Resonance in Copper Nanoparticles. Ukrainian Journal of Physics, 58(3), 249. https://doi.org/10.15407/ujpe58.03.0249

Issue

Section

Nanosystems