Donor-Acceptor Interaction in Films of Tetracene–Tetracyanoquinodimethane Heterostructures and Composites

Authors

  • M. P. Gorishnyi Institute of Physics, Nat.Acad.of Sci. of Ukraine (46, Prosp. Nauky, Kyiv 03028, Ukraine)
  • A. B. Verbitsky Institute of Physics, Nat.Acad.of Sci. of Ukraine (46, Prosp. Nauky, Kyiv 03028, Ukraine)

DOI:

https://doi.org/10.15407/ujpe63.01.0070

Keywords:

donor-acceptor interaction, films, heterostructures, composites, tetracene, tetracyanoquinodimethane, absorption spectrum, photovoltaic response, photo-emf

Abstract

The structures and the absorption and photovoltaic spectra of thin films of tetracene (TC) and tetracyanoquinodimethane (TCNQ), as well as the films of their heterostructures (TC/TCNQ) and composites (TC + TCNQ), have been studied. The heterostructures and composites are obtained by the thermal sputtering of the components – successively or simultaneously, respectively – in vacuum. The photovoltaic spectra were measured, by using the condenser method. It is found for the first time that the largest changes ΔD1 in the TC/TCNQ and TC + TCNQ absorption spectra with respect to the sum of the absorption spectra of the components are observed in the intervals of TCNQ dimeric bands at 2.214 eV (ΔD1 < 0) and in all TC bands (ΔD1 > 0). Those changes testify to the formation of charge transfer complexes between the TC (the electron donor) and TCNQ (the electron acceptor) molecules at the interfaces in the TC/TCNQ heterostructures and in the bulk of TC + TCNQ composites, which is also confirmed by the appearance of TC+- and TCNQ-bands in the photovoltaic spectra of both the heterostructure and composite films. This result is important for a deeper understanding of the operating mechanisms in various potentially imaginable devices based on those heterostructures and composites (solar cells, field-effect transistors, and light-emitting diodes).

References

<ol>
<li>N. Geacintov, M. Pope, H. Kallman. Photogeneration of charge carriers in tetracene. J. Chem. Phys. 45, 2639 (1966).
<a href="https://doi.org/10.1063/1.1727984">https://doi.org/10.1063/1.1727984</a>
</li>
<li>P.J. Reucroft, P.L. Kronick, E.E. Hillman. Photovoltaic effects in tetracene crystals. Mol. Cryst. Liq. Cryst. 6, 247 (1969).
<a href="https://doi.org/10.1080/15421406908082962">https://doi.org/10.1080/15421406908082962</a>
</li>
<li>M. Campione, D. Braga, L. Raimondo, M. Moret, A. Sassella, S. Binetti, M. Acciarri. The photovoltaic response of intrinsic organic semiconductor single crystals. Open Appl. Phys. J. 3, 17 (2010).
<a href="https://doi.org/10.2174/1874183501003010017">https://doi.org/10.2174/1874183501003010017</a>
</li>
<li>M.P. Gorishnyi, A.B. Verbitsky. Structural, optical, and photovoltaic properties of tetracene thin films. Ukr. J. Phys. 6, 50 (2016).
<a href="https://doi.org/10.15407/ujpe61.01.0050">https://doi.org/10.15407/ujpe61.01.0050</a>
</li>
<li>C.-W. Chu, Y. Shao, V. Shrotriua, Y. Yang. Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions. Appl. Phys. Lett. 86, 243506 (2005).
<a href="https://doi.org/10.1063/1.1946184">https://doi.org/10.1063/1.1946184</a>
</li>
<li>Y. Shao, S. Sista, C.-W. Chu, D. Sievers, Y. Yang. Enhancement of tetracene photovoltaic devices with heat treatment. Appl. Phys. Lett. 90, 103501 (2007).
<a href="https://doi.org/10.1063/1.2709505">https://doi.org/10.1063/1.2709505</a>
</li>
<li>R.J. Tseng, R. Chan, V.C. Tung, Y. Yang. Anisotropy in organic single-crystal photovoltaic characteristics. Adv. Mater. 20, 435 (2008).
<a href="https://doi.org/10.1002/adma.200701374">https://doi.org/10.1002/adma.200701374</a>
</li>
<li>J.-M. Choi, J. Lee, D.K. Hwang, J.H. Kim, S. Im, E. Kim. Comparative study of the photoresponse from tetracenebased and pentacene-based thin-film transistors. J. Appl. Phys. Lett. 88, 043508 (2006).
<a href="https://doi.org/10.1063/1.2168493">https://doi.org/10.1063/1.2168493</a>
</li>
<li>Y. Xia, V. Kalinari, C.D. Frisibie, N.K. Oh, J.A. Rogers. Tetracene air-gap single-crystal field-effect transistors. J. Appl. Phys. Lett. 90, 162106 (2007).
<a href="https://doi.org/10.1063/1.2724895">https://doi.org/10.1063/1.2724895</a>
</li>
<li> R. Sarma, D. Saikia. Study of tetracene thin film transistors using La2O3 as gate insulator. Indian J. Pure Appl. Phys. 47, 876 (2009).
</li>
<li> M.M. Islam. Self-assemble monolayer dependent field effect transistors performance based on tetracene single-crystal. J. Bangladesh Chem. Soc. 25 (2), 194 (2012).
</li>
<li> A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von Seggern. Light-emitting field-effect transistor based on a tetracene thin film. Phys. Rev. Lett. 91, 157406 (2003).
<a href="https://doi.org/10.1103/PhysRevLett.91.157406">https://doi.org/10.1103/PhysRevLett.91.157406</a>
</li>
<li> J. Renynaert, D. Cheyns, D. Janssen, R. M?uller, V.I. Arkhipov, J. Genoe, G. Borghs, P. Heremans. Ambipolar injection in a submicron-channel light-emitting tetracene transistor with distinct source and drain contacts. J. Appl. Phys. 97, 114501 (2005).
<a href="https://doi.org/10.1063/1.1913793">https://doi.org/10.1063/1.1913793</a>
</li>
<li> Y. Ohshima, H. Satou, N. Hirako, H. Kohn, T. Manaka, M. Iwamoto. Direct observation of carrier behavior leading to electroluminescence in tetracene field-effect transistor. Jpn. J. Appl. Phys. 50, 04Dk14 (2011).
<a href="https://doi.org/10.1143/JJAP.50.04DK14">https://doi.org/10.1143/JJAP.50.04DK14</a>
</li>
<li> D.S. Acker, R.J. Harder, W.R. Hertler, W. Mahler, L.R. Melbv, R.E. Benson, W.E. Mochel. 7,7,8,8-tetracyanoquinodimethane and its electrically conducting anionradical derivatives. J. Am. Chem. Soc. 82, 6408 (1960).
<a href="https://doi.org/10.1021/ja01509a052">https://doi.org/10.1021/ja01509a052</a>
</li>
<li> J. Ferraris, D.O. Cowan, V. Walatka, J.H. Perlstein. Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc. 95, 948 (1973).
<a href="https://doi.org/10.1021/ja00784a066">https://doi.org/10.1021/ja00784a066</a>
</li>
<li> H.T. Jonkman, J. Kommandeur. The UV spectra and their calculation of TCNQ and its mono- and di-valent anion. Chem. Phys. Lett. 15 (4), 496 (1972).
<a href="https://doi.org/10.1016/0009-2614(72)80357-9">https://doi.org/10.1016/0009-2614(72)80357-9</a>
</li>
<li> M.P. Gorishnyi. Electron energy structure of the tetracyano-quinodimethane molecule in the neutral and anionradical states. Ukr. J. Phys. 49, 1158 (2004).
</li>
<li> K. Kojima, A. Maeda, M. Ieda. Electrical properties of TCNQ evaporated thin films. In Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Materials, Tokyo, 8-12 July 1991, Vol. 1, p, 185 (1991).
<a href="https://doi.org/10.1109/ICPADM.1991.172039">https://doi.org/10.1109/ICPADM.1991.172039</a>
</li>
<li> T. Oyamada, H. Tanaka, K. Matsushide, H. Sasabe, Ch. Adachi. Switching effect in Cu : TCNQ charge transfercomplex thin films by vacuum codeposition. Appl. Phys. Lett. 83, 1252 (2003).
<a href="https://doi.org/10.1063/1.1600848">https://doi.org/10.1063/1.1600848</a>
</li>
<li> X.-L. Mo, G.-R. Chen, Q.-J. Cai, Zh.-Y. Fan, H.-H. Xu, Y. Yao, J. Yang, H.-H. Gu, Zh.-Y. Hua. Preparation and electrical/optical bistable property of potassium tetracyanoquinodimethane thin films. Thin Solid Films 436, 259 (2003).
<a href="https://doi.org/10.1016/S0040-6090(03)00593-5">https://doi.org/10.1016/S0040-6090(03)00593-5</a>
</li>
<li> Z. Fan, X. Mo, C. Lou, Y. Yao, D. Wang, G. Chen, J.G. Lu. Structures and electrical properties of Ag-tetracyanoquinodimethane organometallic nanowires. IEEE Trans. Nanotechnol. 4 (2), 238 (2005).
<a href="https://doi.org/10.1109/TNANO.2004.837852">https://doi.org/10.1109/TNANO.2004.837852</a>
</li>
<li> K. Xiao, I.N. Ivanov, A.A. Puretzky, Z. Liu, D.B. Geohegan. Directed integration of tetracyanoquinodimethane-Cu organic nanowires into prefabricated device architectures. Adv. Mater. 18, 2184 (2006).
<a href="https://doi.org/10.1002/adma.200600621">https://doi.org/10.1002/adma.200600621</a>
</li>
<li> M.P. Gorishnyi, O.V. Kovalchuk, T.N. Kovalchyk, A.B. Verbitsky, V.E. Vovk. Optical and photoelectric properties of heterostructures of fullerene C60 with phthalocyanines and tetracyanoquinodimethane (TCNQ). Mol. Cryst. Liq. Cryst. 535, 49 (2011).
<a href="https://doi.org/10.1080/15421406.2011.537899">https://doi.org/10.1080/15421406.2011.537899</a>
</li>
<li> H. Gao, Z. Xue, Q. Wu. Chin. Electrical phenomena of C-tetracyanoquinodimethane thin films. Chin. Phys. Lett. 11, 766 (1994).
<a href="https://doi.org/10.1088/0256-307X/11/12/014">https://doi.org/10.1088/0256-307X/11/12/014</a>
</li>
<li> T. Sumimoto, M. Tisuka, S. Kunivoshi, K. Kudo, K. Tanaka, Y.H. Yu. In-situ field effect measurements of copper phthalocyanine films doped with acceptor molecule. J. Korean Phys. Soc. 31, 522 (1997).
</li>
<li> R. Ishikawa, M. Baudo, Y. Morimoto, A. Sandhu. Doping graphene films via chemically mediated charge transfer. Nanoscale Res. Lett. 6, 111 (2011).
<a href="https://doi.org/10.1186/1556-276X-6-111">https://doi.org/10.1186/1556-276X-6-111</a>
</li>
<li> A.J.C. Buurma, O.D. Jurchescu, I. Shokaryev, J. Baas, A. Meetsma, G.A. de Wijs, R.A. de Groot, T.T.M. Palstra. Crystal growth, structure, and electronic band structure of tetracene–TCNQ. J. Chem. Phys. C 111 (8), 3486 (2007).
<a href="https://doi.org/10.1021/jp065944a">https://doi.org/10.1021/jp065944a</a>
</li>
<li> I. Shokaryev, A.J.C. Buurma, O.D. Jurchescu, M.A. Uijttewaal, G.A. de Wijs, T.T.M. Palstra, R.A. de Groot. Electronic band structure of tetracene–TCNQ and perylene–TCNQ compounds. J. Chem. Phys. A 112, 2497 (2008).
<a href="https://doi.org/10.1021/jp0753777">https://doi.org/10.1021/jp0753777</a>
</li>
<li> P. Hu, H. Li, Y. Li, Ch. Kloc. Single-crystal growth, structures, charge transfer and transport properties of anthracene-F4TCNQ and tetracene-F4TCNQ chargetransfer compounds. Cryst. Eng. Commun. 19, 618 (2017).
<a href="https://doi.org/10.1039/C6CE02116F">https://doi.org/10.1039/C6CE02116F</a>
</li>
<li> M. Sakai, M. Iizuka, M. Nakamura, K. Kudo. Fabrication and electrical characterization of tetrathiafulvalenetetracyanoquinodimethane molecular wires. Jpn. J. Appl. Phys. 42, N 4B, 2488 (2003).
<a href="https://doi.org/10.1143/JJAP.42.2488">https://doi.org/10.1143/JJAP.42.2488</a>
</li>
<li> E.A. Silinsh, M.V. Kurik, V. Capek, Electronic Processes in Organic Molecular Crystals. Localization and Polarization Phenomena (Zinatne, 1988) (in Russian).
</li>
<li> R.H. Boyd, W.D. Philips. Solution dimerization of the tetracyanoquinodimethane ion radical. J. Chem. Phys. 43, 2927 (1965).
<a href="https://doi.org/10.1063/1.1697251">https://doi.org/10.1063/1.1697251</a>
</li>
<li> M.P. Gorishnyi. Electron structure of tetrathiatetracene and photo-electric properties of heterostructures on its basis. Ph.D. thesis (Lviv, 1990) (in Russian).
</li>
<li> H. Kuroda, S. Hiroma, H. Akamatu. Polarized absorption spectra of single crystals of ion radical salts. I. Molecular compounds of 7,7,8,8-tetracyano-p-quinodimethane with with N, N, N', N'-tetramethyl-p-phenylenediamine and N, N-dimethyl-p-phenylenediamine. Bull. Chem. Soc. Jpn. 41, 2855 (1968).
<a href="https://doi.org/10.1246/bcsj.41.2855">https://doi.org/10.1246/bcsj.41.2855</a>
</li>
<li> S. Hiroma, H. Kuroda, H. Akamatu. Semiconductivity and photoconductivity of TCNQ crystal. Bull. Chem. Soc. Jpn. 44, 974 (1971).
<a href="https://doi.org/10.1246/bcsj.44.974">https://doi.org/10.1246/bcsj.44.974</a>
</li>
<li> Y. Iida. Electronic spectra of crystalline TCNQ anion radical salts. I. Simple salts. Bull. Chem. Soc. Jpn. 42, 71 (1969).
<a href="https://doi.org/10.1246/bcsj.42.71">https://doi.org/10.1246/bcsj.42.71</a>
</li>
<li> Y. Iida. Electronic spectra of crystalline TCNQ anion radical salts. II. Complex salts. Bull. Chem. Soc. Jpn. 42, 637 (1969).
<a href="https://doi.org/10.1246/bcsj.42.637">https://doi.org/10.1246/bcsj.42.637</a>
</li>
<li> L. Ma, P. Hu, H. Jang, C. Kloc, H. Sun, C. Soci, A.A. Voityuk, M.E. Michel-Beyerle, G.G. Gurzadyan. Single photon triggered dianion formation in TCNQ and F4TCNQ crystals. Sci. Rep. 6, 28510 (2016).
<a href="https://doi.org/10.1038/srep28510">https://doi.org/10.1038/srep28510</a>
</li>
<li> M.P. Gorishnyi. Photoeffect in polythiopentacene films and influence of permanent illumination on it. Ukr. J. Phys. 52, 1154 (2007).
</li>
<li> Ya.I. Vertsimakha, Yu.M. Lopatkin. Influence of photoirradiation on the photoelectric properties of tetracene films. Fundam. Osn. Opt. Pamyat. Sredy No. 15, 49 (1984) (in Russian).
</li>
<li> R. Schlaf, H. Murata, Z.H. Kafafi. Work function measurements on indium tin oxide films. J. Electr. Spectrosc. Rel. Phenom. 120, 149 (2001).
<a href="https://doi.org/10.1016/S0368-2048(01)00310-3">https://doi.org/10.1016/S0368-2048(01)00310-3</a>
</li>
<li> P.H. Fang, A. Golubovic, N.A. Dimond. Photovoltaic current anomaly in naphthacene. Jpn. J. Appl. Phys. 11, 1298 (1972).
<a href="https://doi.org/10.1143/JJAP.11.1298">https://doi.org/10.1143/JJAP.11.1298</a></li></ol>

Published

2018-01-31

How to Cite

Gorishnyi, M. P., & Verbitsky, A. B. (2018). Donor-Acceptor Interaction in Films of Tetracene–Tetracyanoquinodimethane Heterostructures and Composites. Ukrainian Journal of Physics, 63(1), 70–80. https://doi.org/10.15407/ujpe63.01.0070

Issue

Section

Surface physics