Donor-Acceptor Interaction in Films of Tetracene–Tetracyanoquinodimethane Heterostructures and Composites
DOI:
https://doi.org/10.15407/ujpe63.01.0070Keywords:
donor-acceptor interaction, films, heterostructures, composites, tetracene, tetracyanoquinodimethane, absorption spectrum, photovoltaic response, photo-emfAbstract
The structures and the absorption and photovoltaic spectra of thin films of tetracene (TC) and tetracyanoquinodimethane (TCNQ), as well as the films of their heterostructures (TC/TCNQ) and composites (TC + TCNQ), have been studied. The heterostructures and composites are obtained by the thermal sputtering of the components – successively or simultaneously, respectively – in vacuum. The photovoltaic spectra were measured, by using the condenser method. It is found for the first time that the largest changes ΔD1 in the TC/TCNQ and TC + TCNQ absorption spectra with respect to the sum of the absorption spectra of the components are observed in the intervals of TCNQ dimeric bands at 2.214 eV (ΔD1 < 0) and in all TC bands (ΔD1 > 0). Those changes testify to the formation of charge transfer complexes between the TC (the electron donor) and TCNQ (the electron acceptor) molecules at the interfaces in the TC/TCNQ heterostructures and in the bulk of TC + TCNQ composites, which is also confirmed by the appearance of TC+- and TCNQ−-bands in the photovoltaic spectra of both the heterostructure and composite films. This result is important for a deeper understanding of the operating mechanisms in various potentially imaginable devices based on those heterostructures and composites (solar cells, field-effect transistors, and light-emitting diodes).
References
<li>N. Geacintov, M. Pope, H. Kallman. Photogeneration of charge carriers in tetracene. J. Chem. Phys. 45, 2639 (1966).
<a href="https://doi.org/10.1063/1.1727984">https://doi.org/10.1063/1.1727984</a>
</li>
<li>P.J. Reucroft, P.L. Kronick, E.E. Hillman. Photovoltaic effects in tetracene crystals. Mol. Cryst. Liq. Cryst. 6, 247 (1969).
<a href="https://doi.org/10.1080/15421406908082962">https://doi.org/10.1080/15421406908082962</a>
</li>
<li>M. Campione, D. Braga, L. Raimondo, M. Moret, A. Sassella, S. Binetti, M. Acciarri. The photovoltaic response of intrinsic organic semiconductor single crystals. Open Appl. Phys. J. 3, 17 (2010).
<a href="https://doi.org/10.2174/1874183501003010017">https://doi.org/10.2174/1874183501003010017</a>
</li>
<li>M.P. Gorishnyi, A.B. Verbitsky. Structural, optical, and photovoltaic properties of tetracene thin films. Ukr. J. Phys. 6, 50 (2016).
<a href="https://doi.org/10.15407/ujpe61.01.0050">https://doi.org/10.15407/ujpe61.01.0050</a>
</li>
<li>C.-W. Chu, Y. Shao, V. Shrotriua, Y. Yang. Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions. Appl. Phys. Lett. 86, 243506 (2005).
<a href="https://doi.org/10.1063/1.1946184">https://doi.org/10.1063/1.1946184</a>
</li>
<li>Y. Shao, S. Sista, C.-W. Chu, D. Sievers, Y. Yang. Enhancement of tetracene photovoltaic devices with heat treatment. Appl. Phys. Lett. 90, 103501 (2007).
<a href="https://doi.org/10.1063/1.2709505">https://doi.org/10.1063/1.2709505</a>
</li>
<li>R.J. Tseng, R. Chan, V.C. Tung, Y. Yang. Anisotropy in organic single-crystal photovoltaic characteristics. Adv. Mater. 20, 435 (2008).
<a href="https://doi.org/10.1002/adma.200701374">https://doi.org/10.1002/adma.200701374</a>
</li>
<li>J.-M. Choi, J. Lee, D.K. Hwang, J.H. Kim, S. Im, E. Kim. Comparative study of the photoresponse from tetracenebased and pentacene-based thin-film transistors. J. Appl. Phys. Lett. 88, 043508 (2006).
<a href="https://doi.org/10.1063/1.2168493">https://doi.org/10.1063/1.2168493</a>
</li>
<li>Y. Xia, V. Kalinari, C.D. Frisibie, N.K. Oh, J.A. Rogers. Tetracene air-gap single-crystal field-effect transistors. J. Appl. Phys. Lett. 90, 162106 (2007).
<a href="https://doi.org/10.1063/1.2724895">https://doi.org/10.1063/1.2724895</a>
</li>
<li> R. Sarma, D. Saikia. Study of tetracene thin film transistors using La2O3 as gate insulator. Indian J. Pure Appl. Phys. 47, 876 (2009).
</li>
<li> M.M. Islam. Self-assemble monolayer dependent field effect transistors performance based on tetracene single-crystal. J. Bangladesh Chem. Soc. 25 (2), 194 (2012).
</li>
<li> A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, H. von Seggern. Light-emitting field-effect transistor based on a tetracene thin film. Phys. Rev. Lett. 91, 157406 (2003).
<a href="https://doi.org/10.1103/PhysRevLett.91.157406">https://doi.org/10.1103/PhysRevLett.91.157406</a>
</li>
<li> J. Renynaert, D. Cheyns, D. Janssen, R. M?uller, V.I. Arkhipov, J. Genoe, G. Borghs, P. Heremans. Ambipolar injection in a submicron-channel light-emitting tetracene transistor with distinct source and drain contacts. J. Appl. Phys. 97, 114501 (2005).
<a href="https://doi.org/10.1063/1.1913793">https://doi.org/10.1063/1.1913793</a>
</li>
<li> Y. Ohshima, H. Satou, N. Hirako, H. Kohn, T. Manaka, M. Iwamoto. Direct observation of carrier behavior leading to electroluminescence in tetracene field-effect transistor. Jpn. J. Appl. Phys. 50, 04Dk14 (2011).
<a href="https://doi.org/10.1143/JJAP.50.04DK14">https://doi.org/10.1143/JJAP.50.04DK14</a>
</li>
<li> D.S. Acker, R.J. Harder, W.R. Hertler, W. Mahler, L.R. Melbv, R.E. Benson, W.E. Mochel. 7,7,8,8-tetracyanoquinodimethane and its electrically conducting anionradical derivatives. J. Am. Chem. Soc. 82, 6408 (1960).
<a href="https://doi.org/10.1021/ja01509a052">https://doi.org/10.1021/ja01509a052</a>
</li>
<li> J. Ferraris, D.O. Cowan, V. Walatka, J.H. Perlstein. Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc. 95, 948 (1973).
<a href="https://doi.org/10.1021/ja00784a066">https://doi.org/10.1021/ja00784a066</a>
</li>
<li> H.T. Jonkman, J. Kommandeur. The UV spectra and their calculation of TCNQ and its mono- and di-valent anion. Chem. Phys. Lett. 15 (4), 496 (1972).
<a href="https://doi.org/10.1016/0009-2614(72)80357-9">https://doi.org/10.1016/0009-2614(72)80357-9</a>
</li>
<li> M.P. Gorishnyi. Electron energy structure of the tetracyano-quinodimethane molecule in the neutral and anionradical states. Ukr. J. Phys. 49, 1158 (2004).
</li>
<li> K. Kojima, A. Maeda, M. Ieda. Electrical properties of TCNQ evaporated thin films. In Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Materials, Tokyo, 8-12 July 1991, Vol. 1, p, 185 (1991).
<a href="https://doi.org/10.1109/ICPADM.1991.172039">https://doi.org/10.1109/ICPADM.1991.172039</a>
</li>
<li> T. Oyamada, H. Tanaka, K. Matsushide, H. Sasabe, Ch. Adachi. Switching effect in Cu : TCNQ charge transfercomplex thin films by vacuum codeposition. Appl. Phys. Lett. 83, 1252 (2003).
<a href="https://doi.org/10.1063/1.1600848">https://doi.org/10.1063/1.1600848</a>
</li>
<li> X.-L. Mo, G.-R. Chen, Q.-J. Cai, Zh.-Y. Fan, H.-H. Xu, Y. Yao, J. Yang, H.-H. Gu, Zh.-Y. Hua. Preparation and electrical/optical bistable property of potassium tetracyanoquinodimethane thin films. Thin Solid Films 436, 259 (2003).
<a href="https://doi.org/10.1016/S0040-6090(03)00593-5">https://doi.org/10.1016/S0040-6090(03)00593-5</a>
</li>
<li> Z. Fan, X. Mo, C. Lou, Y. Yao, D. Wang, G. Chen, J.G. Lu. Structures and electrical properties of Ag-tetracyanoquinodimethane organometallic nanowires. IEEE Trans. Nanotechnol. 4 (2), 238 (2005).
<a href="https://doi.org/10.1109/TNANO.2004.837852">https://doi.org/10.1109/TNANO.2004.837852</a>
</li>
<li> K. Xiao, I.N. Ivanov, A.A. Puretzky, Z. Liu, D.B. Geohegan. Directed integration of tetracyanoquinodimethane-Cu organic nanowires into prefabricated device architectures. Adv. Mater. 18, 2184 (2006).
<a href="https://doi.org/10.1002/adma.200600621">https://doi.org/10.1002/adma.200600621</a>
</li>
<li> M.P. Gorishnyi, O.V. Kovalchuk, T.N. Kovalchyk, A.B. Verbitsky, V.E. Vovk. Optical and photoelectric properties of heterostructures of fullerene C60 with phthalocyanines and tetracyanoquinodimethane (TCNQ). Mol. Cryst. Liq. Cryst. 535, 49 (2011).
<a href="https://doi.org/10.1080/15421406.2011.537899">https://doi.org/10.1080/15421406.2011.537899</a>
</li>
<li> H. Gao, Z. Xue, Q. Wu. Chin. Electrical phenomena of C-tetracyanoquinodimethane thin films. Chin. Phys. Lett. 11, 766 (1994).
<a href="https://doi.org/10.1088/0256-307X/11/12/014">https://doi.org/10.1088/0256-307X/11/12/014</a>
</li>
<li> T. Sumimoto, M. Tisuka, S. Kunivoshi, K. Kudo, K. Tanaka, Y.H. Yu. In-situ field effect measurements of copper phthalocyanine films doped with acceptor molecule. J. Korean Phys. Soc. 31, 522 (1997).
</li>
<li> R. Ishikawa, M. Baudo, Y. Morimoto, A. Sandhu. Doping graphene films via chemically mediated charge transfer. Nanoscale Res. Lett. 6, 111 (2011).
<a href="https://doi.org/10.1186/1556-276X-6-111">https://doi.org/10.1186/1556-276X-6-111</a>
</li>
<li> A.J.C. Buurma, O.D. Jurchescu, I. Shokaryev, J. Baas, A. Meetsma, G.A. de Wijs, R.A. de Groot, T.T.M. Palstra. Crystal growth, structure, and electronic band structure of tetracene–TCNQ. J. Chem. Phys. C 111 (8), 3486 (2007).
<a href="https://doi.org/10.1021/jp065944a">https://doi.org/10.1021/jp065944a</a>
</li>
<li> I. Shokaryev, A.J.C. Buurma, O.D. Jurchescu, M.A. Uijttewaal, G.A. de Wijs, T.T.M. Palstra, R.A. de Groot. Electronic band structure of tetracene–TCNQ and perylene–TCNQ compounds. J. Chem. Phys. A 112, 2497 (2008).
<a href="https://doi.org/10.1021/jp0753777">https://doi.org/10.1021/jp0753777</a>
</li>
<li> P. Hu, H. Li, Y. Li, Ch. Kloc. Single-crystal growth, structures, charge transfer and transport properties of anthracene-F4TCNQ and tetracene-F4TCNQ chargetransfer compounds. Cryst. Eng. Commun. 19, 618 (2017).
<a href="https://doi.org/10.1039/C6CE02116F">https://doi.org/10.1039/C6CE02116F</a>
</li>
<li> M. Sakai, M. Iizuka, M. Nakamura, K. Kudo. Fabrication and electrical characterization of tetrathiafulvalenetetracyanoquinodimethane molecular wires. Jpn. J. Appl. Phys. 42, N 4B, 2488 (2003).
<a href="https://doi.org/10.1143/JJAP.42.2488">https://doi.org/10.1143/JJAP.42.2488</a>
</li>
<li> E.A. Silinsh, M.V. Kurik, V. Capek, Electronic Processes in Organic Molecular Crystals. Localization and Polarization Phenomena (Zinatne, 1988) (in Russian).
</li>
<li> R.H. Boyd, W.D. Philips. Solution dimerization of the tetracyanoquinodimethane ion radical. J. Chem. Phys. 43, 2927 (1965).
<a href="https://doi.org/10.1063/1.1697251">https://doi.org/10.1063/1.1697251</a>
</li>
<li> M.P. Gorishnyi. Electron structure of tetrathiatetracene and photo-electric properties of heterostructures on its basis. Ph.D. thesis (Lviv, 1990) (in Russian).
</li>
<li> H. Kuroda, S. Hiroma, H. Akamatu. Polarized absorption spectra of single crystals of ion radical salts. I. Molecular compounds of 7,7,8,8-tetracyano-p-quinodimethane with with N, N, N', N'-tetramethyl-p-phenylenediamine and N, N-dimethyl-p-phenylenediamine. Bull. Chem. Soc. Jpn. 41, 2855 (1968).
<a href="https://doi.org/10.1246/bcsj.41.2855">https://doi.org/10.1246/bcsj.41.2855</a>
</li>
<li> S. Hiroma, H. Kuroda, H. Akamatu. Semiconductivity and photoconductivity of TCNQ crystal. Bull. Chem. Soc. Jpn. 44, 974 (1971).
<a href="https://doi.org/10.1246/bcsj.44.974">https://doi.org/10.1246/bcsj.44.974</a>
</li>
<li> Y. Iida. Electronic spectra of crystalline TCNQ anion radical salts. I. Simple salts. Bull. Chem. Soc. Jpn. 42, 71 (1969).
<a href="https://doi.org/10.1246/bcsj.42.71">https://doi.org/10.1246/bcsj.42.71</a>
</li>
<li> Y. Iida. Electronic spectra of crystalline TCNQ anion radical salts. II. Complex salts. Bull. Chem. Soc. Jpn. 42, 637 (1969).
<a href="https://doi.org/10.1246/bcsj.42.637">https://doi.org/10.1246/bcsj.42.637</a>
</li>
<li> L. Ma, P. Hu, H. Jang, C. Kloc, H. Sun, C. Soci, A.A. Voityuk, M.E. Michel-Beyerle, G.G. Gurzadyan. Single photon triggered dianion formation in TCNQ and F4TCNQ crystals. Sci. Rep. 6, 28510 (2016).
<a href="https://doi.org/10.1038/srep28510">https://doi.org/10.1038/srep28510</a>
</li>
<li> M.P. Gorishnyi. Photoeffect in polythiopentacene films and influence of permanent illumination on it. Ukr. J. Phys. 52, 1154 (2007).
</li>
<li> Ya.I. Vertsimakha, Yu.M. Lopatkin. Influence of photoirradiation on the photoelectric properties of tetracene films. Fundam. Osn. Opt. Pamyat. Sredy No. 15, 49 (1984) (in Russian).
</li>
<li> R. Schlaf, H. Murata, Z.H. Kafafi. Work function measurements on indium tin oxide films. J. Electr. Spectrosc. Rel. Phenom. 120, 149 (2001).
<a href="https://doi.org/10.1016/S0368-2048(01)00310-3">https://doi.org/10.1016/S0368-2048(01)00310-3</a>
</li>
<li> P.H. Fang, A. Golubovic, N.A. Dimond. Photovoltaic current anomaly in naphthacene. Jpn. J. Appl. Phys. 11, 1298 (1972).
<a href="https://doi.org/10.1143/JJAP.11.1298">https://doi.org/10.1143/JJAP.11.1298</a></li></ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.